

1Gb

Serial Flash Memory Octal I/O xSPI (eXpanded Serial Peripheral) Interface with On-CHIP ECC

200MHZ (1.8V), 133MHZ (3.0V)

ADVANCED DATA SHEET

1Gb SERIAL FLASH MEMORY Octal I/O xSPI (eXpanded SPI) with On Chip ECC 200MHz (1.8V), 133MHz (3.0V)

ADVANCED INFORMATION

FEATURES

• Industry Standard Serial Interface

- IS25LX01G: 1Gbit/128Mbyte
- IS25WX01G: 1Gbit/128Mbyte
- JEDEC Standard xSPI (eXpanded SPI) compliant
- Protocol: Extended SPI (1S-xy-xy)⁽²⁾ Octal DDR (8D-8D-8D)

High Performance

- Support clock frequency up to;
 - IS25WX (1.8V): SDR 166MHz DDR - 200MHz
 - IS25LX (3.0V): SDR /DDR 133MHz
- Execute-in-place (XIP)
- 2-bit Detection and 1-bit Correction per 16-byte boundary (with ECC)
- Address Parity Check function supported
- Program Array Data CRC function supported.
- Optional PSC (Phase Shifted Clock) (1) is supported to put DQS on the center of read data valid window.
- Data Learning Pattern for training operation
- More than 100,000 Erase/Program Cycles
- More than 20-year Data Retention

Security and Write Protection

- Volatile and nonvolatile locking and software write protection for each 128KB sector
- Password Protection
- Hardware write protection: nonvolatile bits (BP [3:0] and TB) define protected area size.

• Efficient Read and Program modes

- Input Data Format SPI: 1-byte command+3/4 byte Address Octal: 2-byte command+4 byte Address
- PROGRAM/ERASE SUSPEND operation
- 128KB Sector Erase⁽³⁾ and 4KB/32KB Subsector Erase

• Low Power with Wide Temp. Ranges

- Single Voltage Supply IS25LX: 2.70V to 3.60V IS25WX: 1.70V to 2.0V
- TBD mA Active Read Current
- 80 µA Standby Current
- 8 µA Deep Power Down
- Temp Grades:

Extended: -40°C to +105°C Auto A3 Grade: -40°C to +125°C

• Flexible & Efficient Memory Architecture

- 16-Bank Architecture for READ While PROGRAM/ERASE Operations (4)
- Program 1 to 256byte per Page
- Dedicated 64-byte OTP area outside main memory

Hardware Features

- C Input : Serial Clock Input
- DQ0 DQ7 : Serial Data Input and Output
- RESET#: Hardware Reset pin
- DQS: Data Strobe Signal
- ERR#: Error Indication Signal
- W# : Optional Write Protection Signal (1)
- PSC Clock Input⁽¹⁾: Optional Phase Shifted Clock Input

• Electronic signature

- JEDEC -standard 3-byte signature
- Extended device ID: two additional bytes identify device factory options

Configuration

- Boot in SDR x1
- Boot in DDR x8

Industry Standard Pin-out & Packages

- I =24-ball **LFBGA 6x8x1.40mm** (5x5 ball)
- Halogen-Free, RoHS & TSCA Compliant

Notes:

- Dedicated W# and PSC clock are supported in 1. optional devices only.
- x= I/O width (x1 or x8), y= SDR or DDR
- 64KB Sector Erase is supported as an option.
- 4. RWW function is supported with option L

GENERAL DESCRIPTION

The IS25LX01G and IS25WX01G Serial Flash memory offer a versatile storage solution with high flexibility and performance in a simplified pin count package. ISSI's "Industry Standard Serial Interface" Flash is for systems that require limited space, a low pin count, and low power consumption. The device is compliant with JEDEC Standard xSPI (eXpanded Serial Peripheral Interface).

Nonvolatile and volatile configuration registers enable respective default and temporary settings such as READ operation dummy cycles and wrap modes, memory protection, output buffer impedance, SPI protocol type, and XIP mode.

Memory is organized as uniform 128KB sectors, 4KB and 32KB subsectors, and 256 byte pages. Optional 64KB sectors are also supported.

The device includes 64-byte OTP area that can be permanently locked.

Direct boot in Octal DDR protocol provides high performance and ease of use, enabling communication between host and device without need to configure extended SPI protocol operations. However, the devices still support both extended SPI and Octal DDR protocols to ensure legacy system support and easy migration path. The extended SPI protocol supports address and data transmission on one or eight data lines, depending on the command.

XIP feature is supported in extended SPI because its commands are sent through DQ0 only.

Information in octal DDR protocol is always transmitted via eight data lines on both rising and falling clock edges. When accessing cell array (Read/Program), minimum transferred data size is 2-bytes in DDR mode, so the LSB of starting address must be always "0".

Most legacy x1 SPI commands are supported, but require only one clock cycle because command is latched on both rising and falling edges of the clock.

Address cycles are fixed at 4-byte (32-bit) operations from the flash array in octal DDR protocol.

The host does not need to drive DQS during the input operation to the memory. The data input (DQ) to the memory still relies on clock (C) to latch all address and data operations. Most register outputs require dummy clock cycles due to the critical timing from command decoding. With the help of DQS for output data latching, the number of dummy clock is transparent to the host.

Suspend and resume commands provide the ability to pause and resume PROGRAM/ERASE operations. Read while Program/Erase operation provides beginning of read operation from one of 3-banks while programming or erase operation is in progress at specific bank, without interruption of program or erase operation.

There are three type of data integrity check functions:

- ECC to prevent errors from stored data
- Address Parity check to prevent address transmission errors in Octal DDR mode only
- Program array data CRC (Data Parity) to prevent data transmission errors in Octal DDR mode only.

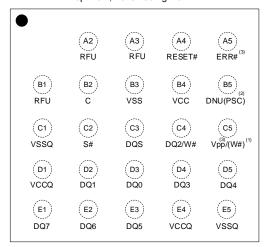
Optional PSC (Phase Shifted Clock) is supported for Read operation only, to offset DQS signal, phase shifted from main clock (C) for controller to put DQS signal within valid data window in Octal DDR mode only.

Package, Voltage & Data Transfer Rate vs. Max. Frequency

Voltage	SDR	DDR
1.8V	166MHz	200MHz
3.0V	133MHz	133MHz

TABLE OF CONTENTS

FEA	ATURES	2
GE	NERAL DESCRIPTION	3
TAE	BLE OF CONTENTS	4
1.	PIN CONFIGURATION	6
2.	PIN DESCRIPTIONS	7
3.	BLOCK DIAGRAM	8
4.	xSPI Signal Protocol Description	9
5.	SYSTEM CONFIGURATION	11
	5.1 BANK/BLOCK/SECTOR ADDRESSES	12
	5.2 SERIAL Flash Discoverable ParameterS	14
6.	REGISTERS	15
	6.1 STATUS REGISTER	15
	6.2 FLAG STATUS REGISTER	18
	6.3 Internal CONFIGURATION REGISTER	19
	6.4 NONVOLATILE CONFIGURATION REGISTER	20
	6.5 VOLATILE CONFIGURATION REGISTER	22
	6.6 SECURITY REGISTERS	29
	6.7 NONVOLATILE LOCK BIT AND VOLATILE LOCK BIT SECURITY REGISTERS	31
	6.8 PROTECTION MANAGEMENT REGISTER	34
7.	DEVICE ID DATA	36
8.	DEVICE OPERATION	37
	8.1 Basic Device OPERATION	37
	8.2 COMMAND SET SUMMARY	38
	8.3 SOFTWARE RESET OPERATIONS	41
	8.4 READ ID Operation	42
	8.5 READ SFDP OPERATION	43
	8.6 READ MEMORY OPERATION	44
	8.7 WRITE ENABLE/DISABLE OPERATION	48
	8.8 READ REGISTER OPERATION	49
	8.9 WRITE REGISTER OPERATION	51
	8.10 CLEAR FLAG STATUS REGISTER OPERATION	53
	8.11 PROGRAM OPERATION	54
	8.12 ERASE OPERATION	57
	8.13 SUSPEND/RESUME Operations	59
	8.14 ONE-TIME PROGRAMMABLE Operation	61
	8.15 ONE-TIME PROGRAMMABLE Operation	62
	8.16 ADDRESS MODE Operation	63
	8.17 State Table	64


	8.18 XIP MODE	65
	8.19 POWER-UP and POWER-DOWN	68
	8.20 DATA LEARNING PATTERN READ Operation FOR TRAINING (DLPRD)	70
	8.21 ECC OPERATION	72
	8.22 PROGRAM ADDRESS Parity CHECK and PROGRAM ARRAY Data CRC CHECK OPERATION.	73
	8.23 ERR# SiGNAL OPERATION	74
	8.24 Clear ERRB Operation	75
	8.25 READ WHILE PROGRAM/ERASE OPERATION	76
	8.26 Phase Shifted Clock for CENTER ALIGNED DQS in Octal DDR OPERATION	77
	8.27 In-Band RESET	78
9.	ELECTRICAL CHARACTERISTICS	80
	9.1 ABSOLUTE MAXIMUM RATINGS (1)	80
	9.1 OPERATING Conditions	80
	9.2 PIN CAPACITANCE (1)	80
	9.3 AC TIMING I/O CONDITIONS	81
	9.4 DC CURRENT CHARACTERISTICS AND OPERATING CONDITIONS	82
	9.5 AC CHARACTERISTICS	83
	9.6 PROGRAM/ERASE SPECIFICATIONS	91
10.	PACKAGE TYPE INFORMATION	92
	10.1 24-BALL LOW PROFILE FINE PITCH BGA 6x8x1.40mm 5x5 BALL ARRAY (I)	92
11	ORDERING INFORMATION - Valid Part Numbers	93

1. PIN CONFIGURATION

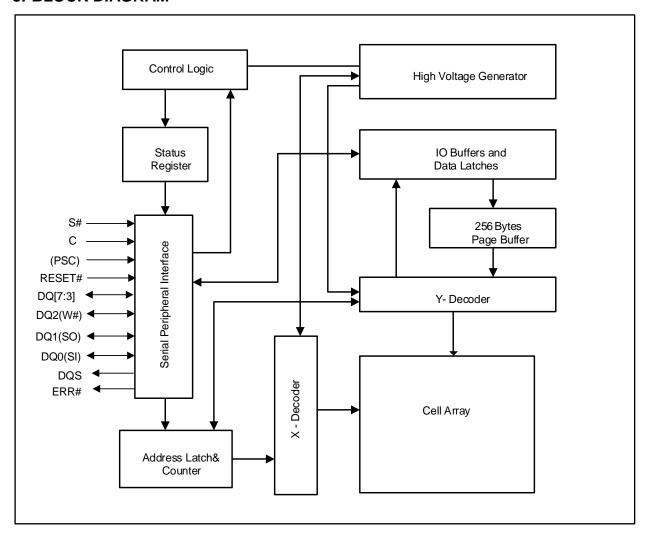
24-ball BGA (5x5 Array)

Top View, Balls Facing Down

Notes:

- 1. Dedicated W# instead of Vpp is supported as an optional device. See the ordering information for detail.
- 2. Dedicated PSC (Phase Shifted Clock) is supported as an optional device. See the ordering information for detail.

2. PIN DESCRIPTIONS


SYMBOL	TYPE	DESCRIPTION
С	INPUT	Clock: Provides timing for the serial interface. Command, address, or data inputs are latched on the rising edge of C. Data is shifted out on the falling edge of C.
S#	INPUT	Chip Select: The Chip select (S#) pin enables and disables the device operation.
RESET#	INPUT	RESET#: The RESET# pin is a hardware RESET signal. When RESET# is driven HIGH, the memory is in the normal operating mode. When RESET# is driven LOW, the memory enters reset mode and output is High-Z. If RESET# is driven LOW while an internal WRITE, PROGRAM, or ERASE operation is in progress, data may be lost. Internal Pull-Up.
W# ⁽¹⁾	INPUT	Write Protect: This input signal is used to freeze the status register in conjunction with the enable/disable bit of the status register. When the enable/disable bit of the status register is set to 1 and W# signal is driven LOW, the status register nonvolatile bits become read-only and the WRITE STATUS REGISTER operation will not be executed. During the extended-SPI protocol with OCTAL READ/PROGRAM instructions, and during octal DDR protocol, this pin functions an input/output (DQ2 functionality). But Dedicated W# ball is available in BGA PKG (C5 ball) as an option.
PSC (1)	INPUT	Phase Shifted Clock: PSC allows independent skewing of the DQS signal with respect to the C inputs during read operation.
DQ[7:0]	INPUT/ OUTPUT	Serial IO: Bidirectional signals that transfer address, data, and command information. In extended-SPI protocol, DQ0 functions as an input for command. But address and data transfer on DQ [7:0] depends on the command. Input (address, write data) can be latched on the rising edge of C (SDR) or on both edges of C (DDR). Output data can be shifted out on the falling edge of C (SDR) or on both edges of C (DDR). In Octal DDR protocol, DQ[7:0] always function as I/O, input is latched on both edges of C, and output is shifted out on both edges of C.DQ2 is used also as write protection control.
DQS	OUTPUT	Data Strobe Signal: Indicates output data valid and is required to support high speed data output. Not necessary required in extended-SPI protocol except to achieve high frequency for specific DDR commands. Used for READ but not for WRITE operations. Configured by nonvolatile and volatile configuration register bit 5 at address 00h. When enabled, DQS is driven to ground at S# LOW and until the device is driving output data, in which case DQS toggles to synchronize data output. When not enabled, DQS is not driven.
VCC	SUPPLY	Supply voltage: Core supply
VCCQ	SUPPLY	Supply voltage: I/O supply
Vpp	SUPPLY	Supply voltage: If Vpp is in the voltage of VPPH, the signal acts as an additional power supply for programming operation, as defined in the Operating Conditona table. The Vpp pad will be internally pulled up to VCC, so customer can leave Vpp pin floated if not used.
VSS	GROUND	Ground: Core ground connection. VSS is the reference for the VCC supply voltage.
VSSQ	GROUND	Ground: I/O ground connection. VSSQ is the reference for the VCCQ supply voltage.
RFU	-	Reserved for future use: Must be left floating.

Note:

1. Dedicated W# and PSC are supported in the optional device.

3. BLOCK DIAGRAM

4. xSPI Signal Protocol Description

xSPI command protocol is for Octal DDR (x8) protocols and Extended SPI (x1) protocol.

- Octal DDR protocol
- Traditional Extended SPI protocol

Protocol	Command	Address	Remark
Octal DDR	2 byte, DDR (Valid byte + Repeated byte) (1) via DQ [7:0]	4-byte only	Command is valid byte and command extension is repeated byte.
Extended SPI	1 byte, SDR (Valid byte) via DQ0 only	3 or 4 byte	Defaults 3 byte address mode

Note:

1. The device actually decodes 1st byte of valid byte on the rising edge of clock only in command, so repeated byte of command extension becomes dummy byte.

ISSI xSPI device supports below operation:

- Extended SPI mode: 1S-xy-xy operation (x=bit width, y=SDR or DDR)
 - Command is always sent through DQ0 bit (x1), command with 3-byte address is default.
 - o 1S-1S-1S: Traditional SPI protocol
 - 1S-1S-8S: Fast Read Octal Output operation and Octal Input Page Program operation
 - o 1S-1D-8D: DDR Fast Read Octal Output operation.
 - o 1S-8S-8S: Fast Read Octal IO operation and Extended Octal IO Page Program operation.
 - 1S-8D-8D: DDR Fast Read Octal IO operation (exceptional command with 4-byte address only).
- Octal DDR mode: 8D-8D-8D operation, command with 4-byte address only
 - Eight IO signals are used during command transfer, address transfer, and data transfer. . All phases are DDR.

Note: Minimum transferred data size is 2-bytes in DDR data transfer operation, so the LSB of starting address must be always "0".(1S-1D-8D, 1S-8D-8D, 8D-8D-8D)

In 1S-1S-1S mode, bit transfer uses DQ [0] to transfer information from master to slave and DQ [1] to transfer information from slave to master. On each IO, information is placed on the IO line in Most Significant Bit (MSB) to Least Significant Bit (LSB) order within each byte. Sequential command modifier bytes are transferred in highest order to lowest order sequence. Sequential data bytes are transferred in lowest address to highest address order.

Table 4.1 1S-1S-1S Bit Positions

DQ	Command Bits	Command Modifier	Latency	Data Byte 0	Data Byte 1
		Bits (address) (1)			
0	7, 6, 5, 4, 3, 2, 1, 0	31 (23), 30 (22), 1, 0	X	X	X
1	X	X	X	7, 6, 5, 4, 3, 2, 1, 0	7, 6, 5, 4, 3, 2, 1, 0
2	X	X	X	X	X
3	X	X	X	X	X
4	X	X	X	X	X
5	X	X	X	X	X
6	X	X	X	X	X
7	X	X	X	X	X

Note:

1. 3-byte or 4-byte address is followed.

In 8D-8D-8D mode, bit transfer uses eight DQ signals of DQ [7:0]. The LSB of each byte is placed on DQ [0] with each higher order bit on the successively higher numbered DQ signals. Command is composed of valid command byte of bits [7:0]. Command Modifier Bits are composed of command extension byte (repeated byte) and address bytes (4-byte). All transfer is in DDR mode. **Minimum size of transferred Read/Write data is 2 byte (1 word) in DDR mode.**

Table 4.2 8D-8D-8D Bit Positions

DQ	Command	Command Modifier Bits			Latency	Data V	Vord 0	Data V	Vord 1		
	Bits	(co	mmand	ext. & a	addre	ss)					
0	0	0	24	16		0	X	0	0	0	0
1	1	1	25	17		1	X	1	1	1	1
2	2	2	26	18		2	X	2	2	2	2
3	3	3	27	19		3	X	3	3	3	3
4	4	4	28	20		4	X	4	4	4	4
5	5	5	29	21		5	X	5	5	5	5
6	6	6	30	22		6	X	6	6	6	6
7	7	7	31	23		7	X	7	7	7	7

5. SYSTEM CONFIGURATION

The memory array is divided into 8 Banks. The multi bank structure enables Read while Program/Erase operation, which means read cell array data from one bank while another bank is in the middle of program/erase operation.

Individual Bank is divided into uniform 128KB sector (or optional 64KB sector), and each sector is divided into 4KB/32KB subsectors.

The Status Register controls how the memory is protected.

5.1 BANK/BLOCK/SECTOR ADDRESSES

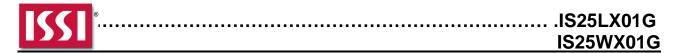
Table 5.1 Sector/Subsector Addresses (Sector Size = 128KB)

Density	Sector. (128KB)	Subsector No. (32Kbyte)	Subsector No. (4Kbyte)	Address Range
		Subsector 0	Subsector 0	000000h - 000FFFh
		Subsector o	:	:
		Subsector 1	:	:
	Sector 0	Cubocotor 1	Subsector 15	00F000h - 00FFFFh
	Sector 6	Subsector 2	Subsector 16	010000h - 010FFFh
		Oubsector 2	:	:
		Subsector 3	:	:
		Cubocolor o	Subsector 31	01F000h - 01FFFFh
	:		:	:
	Sector 127	Subsector 508	Subsector 4064	FE0000h – FE0FFFh
			:	:
		Subsector 509	:	:
1Gb			Subsector 4079	FEF000h – FEFFFFh
7		Subsector 510	Subsector 4080	FF0000h – FF0FFFh
			:	:
		Subsector 511	:	:
			Subsector 4095	FFF000h – FFFFFFh
	:		:	:
		Subsector 4092	Subsector 32,734	7EF0000h – 7EF0FFFh
		Oub300101 4032	:	:
		Subsector 4093	:	:
	Sector		Subsector 32,749	7EFF000h – 7EFFFFFh
	1023	Subsector 4094	Subsector 32,750	7F00000h – 7F00FFFh
			:	:
		Subsector 4095	:	:
			Subsector 32,765	7FFF000h – 7FFFFFh

Note:

1. Below is the mapping for bank & Sector when Sector size is 128KB

	Bank 0	Bank 1	Bank 2	Bank 3	Die 0
	Sector 0~63	Sector 64~127	Sector 128~191	Sector 192~255	Die 0
	Bank 4	Bank 5	Bank 6	Bank 7	Die 1
1Gb	Sector 256~319	Sector 320~383	Sector 384~447	Sector 448~511	DIE I
IGB	Bank 8	Bank 9	Bank 10	Bank 11	Die 2
	Sector 512~575	Sector 576~639 Sector 6	Sector 640~703	Sector 704~767	Die 2
	Bank 12	Bank 13	Bank 14	Bank 15	Die 3
	Sector 768~831	Sector 832~895	Sector 896~959	Sector 960~1023	Die 3


Table 5.2 Table Sector/Subsector Addresses (Sector Size = 64KB)

Density	Sector No. (64Kbyte)	Subsector No. (32Kbyte)	Subsector No. (4Kbyte)	Address Range
		Subsector 0	Subsector 0	000000h - 000FFFh
	Sector 0	Subsector o	•	:
	Seciol 0	Subsector 1	:	<u>:</u>
			Subsector 15	00F000h - 00FFFFh
		Subsector 2	Subsector 16	010000h - 010FFFh
	Sector 1	Subsector 2	:	2
	Occioi i	Subsector 3	:	:
		Cubocotor C	Subsector 31	01F000h - 01FFFFh
	:		:	:
		Subsector 508	Subsector 4064	FE0000h – FE0FFFh
	Sector 254	Subsector 506	:	:
		Subsector 509	:	Ī
1Gb			Subsector 4079	FEF000h – FEFFFFh
7	Sector 255	Subsector 510	Subsector 4080	FF0000h – FF0FFFh
		Odbacotor 510	:	:
		Subsector 511	:	:
		Cubocotor or r	Subsector 4095	FFF000h – FFFFFFh
	:		:	ī
		Subsector 4092	Subsector 32,736	7FE0000h - 7FE0FFFh
	Sector 2046	3003ector 4092	:	Ī
	0000012040	Subsector 4093	:	:
		Oubsector 4033	Subsector 32,751	7FEF000h – 7FEFFFFh
		Subsector 4094	Subsector 32,752	7FF0000h – 7FF0FFFh
	Sector 2047	- Cubbooloi 4004	:	:
	200101 2041	Subsector 4095	:	:
		245000101 1000	Subsector 32,767	7FFF000h – 7FFFFFh

Note:

1. Below is the mapping for bank & Sector when Sector size is 64KB

	Bank 0	Bank 1	Bank 2	Bank 3	Die
	Sector 0~127	Sector128~255	Sector 256~383	Sector 384~511	0
	Bank 4	Bank 5	Bank 6	Bank 7	Die
10h	Sector 512~639	Sector 640~767	Sector 768~895	Sector 896~1023	1
1Gb	Bank 8	Bank 9	Bank 10	Bank 11	Die
	Sector 1024~1151	Sector 1152~1279	Sector 1280~1407	Sector 1408~1535	2
	Bank 12	Bank 13	Bank 14	Bank 15	Die
	Sector 1536~1663	Sector 1664~1791	Sector 1792~1919	Sector 1920~2047	3

5.2 SERIAL FLASH DISCOVERABLE PARAMETERS

The Serial Flash Discoverable Parameters (SFDP) standard defines the structure of the SFDP database within the memory device. SFDP is the standard of JEDEC JESD216.

The JEDEC-defined header with Parameter ID FF00h and related Basic Parameter Table is mandatory. Additional parameter headers and tables are optional.

6. REGISTERS

6.1 STATUS REGISTER

Status register bits can be read from or written to using READ STATUS REGISTER or WRITE STATUS REGISTER commands, respectively. When the status register enable /disable bit (bit 7) is set to 1 and W# is driven LOW, the status register nonvolatile bits become read only and the WRITE STATUS REGISTER operation will not execute. The only way to exit this hardware-protected mode is to driven W# HIGH.

Table 6.1 Status Register Bit Definition

Bit	Name	Settings	Definition	Notes	
	001410	0 = Enabled (default)	Nonvolatile control bit: Used with W# to enable or disable writing to the status		
/	7 SRWD	1 = Disabled	register:	-	
	1	0 = Top (default)	Nonvolatile control bit: Determines whether the protected memory area defined		
5	ТВ	1 = Bottom	by the block protect bits starts from the top or bottom of the memory array.	-	
			Nonvolatile control bit: Defines memory to be software protected against		
6,		See Protected Area	PROGRAM or ERASE operations. When one or more block protect bits is set to		
4:2	BP[3:0]	tables	1, a designated memory area is protected from PROGRAM and ERASE	1	
			operations.		
		0 = Clear (default)	Volatile control bit: The device always powers up with this bit cleared to prevent		
1	WEL	1 = Set	inadvertent WRITE, PROGRAM, or ERASE operations. To enable these	-	
		1 = 561	operations, the WRITE ENABLE operation must be executed first to see this bit.		
			Volatile status bit: Indicates if one of the following command cycles in in		
			progress:		
		0 = Ready(default)	WRITE STATUS REGISTER		
0	WIP	1 = Busy	WRITE NONVOLATILE CONFIGURATION REGISTER	2	
			PROGRAM		
			ERASE		

Notes

- 1. The CHIP ERASE command is executed only if all bits = 0.
- 2. Status register bit 0 is the inverse of flag status register bit 7.

Table 6.2 Block assignment by Block Protect (BP) Bits

Sta	Status Register Bits			Block Size =128KB, Protected Memory Area (1Gb, 1024 Blocks)			
BP3	BP2	BP1	BP0	TBS = 0, Top area	TBS = 1, Bottom area		
0	0	0	0	0 (None)	0 (None)		
0	0	0	1	1 (1 block : 1023 th)	1 (1 block : 0 th)		
0	0	1	0	2 (2 blocks : 1022 th and 1023 rd)	2 (2 blocks : 0 th and 1 st)		
0	0	1	1	3 (4 blocks : 1020 th to 1023 rd)	3 (4 blocks : 0 th to 3 rd)		
0	1	0	0	4 (8 blocks : 1016 th to 1023 rd)	4 (8 blocks : 0 th to 7 th)		
0	1	0	1	5 (16 blocks : 1008 th to 1023 rd)	5 (16 blocks : 0 th to 15 th)		
0	1	1	0	6 (32 blocks : 992 nd to 1023 rd)	6 (32 blocks : 0 th to 31 st)		
0	1	1	1	7 (64 blocks : 960 th to 1023 rd)	7 (64 blocks : 0 th to 63 rd)		
1	0	0	0	8 (128 blocks : 896 th to 1023 rd)	8 (128 blocks : 0 th to 127 th)		
1	0	0	1	9 (256 blocks : 768 th to 1023 rd)	9 (256 blocks : 0 th to 255 th)		
1	0	1	0	10 (512 blocks : 512 th to 1023 rd)	10 (512 blocks : 0 th to 511 th)		
1	0	1	1	11 (1024 blocks : 0 th to 1023 rd)	11 (1024 blocks : 0 th to 1023 rd)		
1	1	0	0	12 (1024 blocks : 0 th to 1023 rd)	12 (1024 blocks : 0 th to 1023 rd)		
1	1	0	1	13 (1024 blocks : 0 th to 1023 rd)	13 (1024 blocks : 0 th to 1023 rd)		
1	1	1	0	14 (1024 blocks : 0 th to 1023 rd)	14 (1024 blocks : 0 th to 1023 rd)		
1	1	1	1	15 (1024 blocks : 0 th to 1023 rd)	15 (1024 blocks : 0 th to 1023 rd)		

Table 6.3 Block assignment by Block Protect (BP) Bits for Optional 64KB Sector Size

Sta	Status Register Bits		Byte	Protected Memory A	rea (1Gb, 2048Blocks)	
ВР3	BP2	BP1	BP 0	Protected	TBS = 0, Top area	TBS = 1, Bottom area
0	0	0	0	0KB	0 (None) 0 (None)	
0	0	0	1	64KB	1 (1 block: 2047 th)	1 (1 block: 0 th)
0	0	1	0	128KB	2 (2 blocks: 2046 th and 2047 th)	2 (2 blocks: 0 th and 1 st)
0	0	1	1	256KB	3 (4 blocks: 2044 th to 2047 th)	3 (4 blocks: 0 th to 3 rd)
0	1	0	0	512KB	4 (8 blocks: 2040 th to 2047 th)	4 (8 blocks: 0 th to 7 th)
0	1	0	1	1MB	5 (16 blocks: 2032 nd to 2047 th)	5 (16 blocks: 0 th to 15 th)
0	1	1	0	2MB	6 (32 blocks: 2016 th to 2047 th)	6 (32 blocks: 0 th to 31 st)
0	1	1	1	4MB	7 (64 blocks: 1984 th to 2047 th)	7 (64 blocks: 0 th to 63 rd)
1	0	0	0	8MB	8 (128 blocks: 1920 th to 2047 th)	8 (128 blocks: 0 th to 127 th)
1	0	0	1	16MB	9 (256 blocks: 1792 nd to 2047 th)	9 (256 blocks: 0 th to 255 th)
1	0	1	0	32MB	10 (512 blocks : 1536 th to 2047 th)	10 (512 blocks : 0 th to 511 st)
1	0	1	1	64MB	11 (1024 blocks : 1024 th to 2047 th)	11 (1024 blocks : 0 th to 1023 rd)
1	1	0	0	96MB	12 (1536 blocks : 512 nd to 2047 th)	12 (1536 blocks : 0 th to 1535 th)
1	1	0	1	112MB	13 (1792 blocks : 256 th to 2047 th)	13 (1792 blocks : 0 th to 1791 st)
1	1	1	0	120MB	14 (1920 blocks : 128 th to 2047 th)	14 (1920 blocks : 0 th to 1919 th)
1	1	1	1	128MB (AII)	15 (2048 blocks : 0 th to 2047 th)	15 (2048 blocks : 0 th to 2047 th)

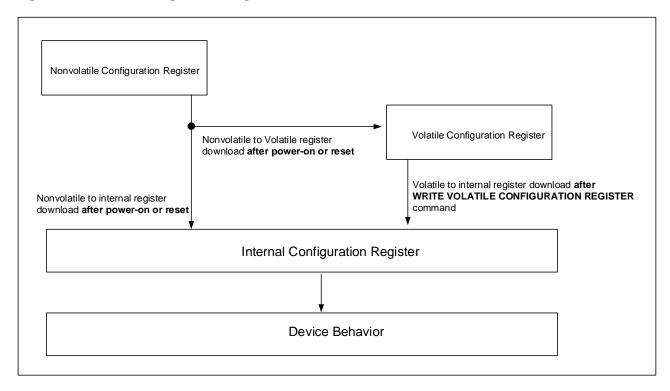
6.2 FLAG STATUS REGISTER

Flag status register bits are read by using READ FLAG STATUS REGISTER command. All bits are volatile and are reset to zero on power up.

Status bits are set and reset automatically by the internal controller. Error bits must be cleared through the CLEAR STATUS REGISTER command.

Table 6.4 Flag Status Register

Bit	Name	Settings	Definition
7	Program or erase controller	0 = Busy 1 = Ready	Status bit: Indicates whether one of the following operation is in progress: WRITE STATUS REGISTER, WRITE NONVOLATILE CONFIGURATION REGISTER, PROGRAM, or ERASE
6	Erase suspend	0 = Clear 1 = Suspend	Status bit: Indicates whether an ERASE operation has been or is going to be suspended.
5	Erase	0 = Clear 1 = Failure or protection error	Error bit: Indicates whether an ERASE operation has succeeded or failed.
4	Program	0 = Clear 1 = Failure or protection error	Error bit: Indicates whether a PROGRAM operation has succeeded or failed.
3	Reserved	0	Reserved
2	Program suspend	0 = Clear 1 = Suspend	Status bit: Indicates whether a PROGRAM operation has been or is going to be suspended.
1	Protection	0 = Clear 1 = Failure or protection error	Error bit : Indicates whether an ERASE or PROGRAM operation has attempted to modify the protected array sector, or whether a PROGRAM operation has attempted to access the locked OTP space.
0	Addressing	0 = 3-byte addressing 1 = 4-byte addressing	Status bit: Indicates whether 3-byte or 4-byte address mode is enabled.


6.3 INTERNAL CONFIGURATION REGISTER

The memory configuration is set by an internal configuration register that is not directly accessible to users.

The user can change the default configuration at power up by using the WRITE NONVOLATILE CONFIGURATION REGISTER. Information from the nonvolatile configuration register overwrites the internal configuration register during power on or after a reset.

The user can change the configuration during device operation using the WRITE VOLATILE CONFIGURATION REGISTER command. Information from the volatile configuration register overwrites the internal configuration register immediately after the WRITE command completes.

Figure 6.1 Internal Configuration Register

6.4 NONVOLATILE CONFIGURATION REGISTER

Nonvolatile configuration register bits set the device configuration after power-up or reset. All bits are erased (FFh) unless stated otherwise. This is read from and written to using the READ NONVOLATILE CONFIGURATION REGISTER and WRITE NONVOLATILE CONFIGURATION REGISTER command, respectively. The commands use the main array address scheme, but only the LSB is used to access different register settings, thereby providing up to 256 bytes of registers. A READ command from reserved address returns FFh. A WRITE command to a reserved setting is ignored, flag status register bit 1 is set, and the write enable latch bit is cleared.

Table 6.5 Nonvolatile Configuration Register

Address	Bit	Name	Settings	Description	Note s
FFh:0Ch		Reserved	Reserved Reserved		
	[7]	Reserved	Reserved	Reserved	
	[6]	SSOENB	1 = All 8 DQs are same (Default) 0 = DQ3 is inverted, and remaining IOs are same.	SSO pattern of DLP Enabled or Disabled. SSO pattern means IO3 is inverted and other 7 IOs are the same.	
	A4 AC h. to (Defends)		Selects chunk size for Program CRC operation.		
0Bh	[3]	CRCENB	1 = CRC Disabled (Default) 0 = CRC Enabled	Address Parity and Array Data Parity Enabled or Disabled in Octal DDR mode.	
	[2]	ERRBECC	1 = ERR# indicates 2-bit detection.(Default) 0 = ERR# LOW indicates 1-bt correction.	ERR# LOW behavior for 1-bit correction or 2-bit detection out of ECC event. Also it will determine ECC error type for ECCFCA bits. Only valid when ECCENB bit is 0.	
	[1]	ERRBENB	1 = ERR# OFF (Default) 0 = ERR# ON	Enable or disable ERR# signal, which indicates ERR error.	
	[0]	ECCENB	1 = ECC OFF (Default) 0 = ECC ON	Enables or Disables ECC	
0Ah	[7:0]	DLP Pattern	55h = 01010101 (Default) Bit 7 is an MSB	Data Learning Pattern for training.	
09h:08h		Reserved	Reserved	Reserved	

Nonvolatile Configuration Register (Continued)

Address	Bit	Name	Settings	Description	Note s
07h	[7:0]	Wrap configuration	FFh = Continuous (Default) FEh = 64-byte wrap FDh = 32-byte wrap FCh = 16-byte wrap Others = Reserved	Enables the device to read from memory sequentially or to wrap within 16-, 32-, or 64-byte boundaries	
06h	[7:0]	XIP Configuration	FFh = XIP disabled (Default) FEh = 8IOFR XIP FDh = 8OFR XIP F8h = FAST READ XIP Others = Reserved	Enables the device to operate in the selected XIP mode immediately after power-on reset.	
05h	[7:0]	Beyond 128Mb address configuration	FFh = 3-byte address (Default) FEh = 4-byte address Others = Reserved	Defines the number of address bytes for a command.	
04h	[7:0]	Reserved	Reserved	Reserved	
03h	[7:0]	Programmab le output drive strength	FFh = 50 ohm (Default) FEh = 35 ohm FDh = 25 ohm FCh = 18 ohm Others = Reserved	Optimizes the impedance at VCC/2 output voltage.	
02h	[7:0]	Reserved	Reserved	Reserved	
01h	[7:0]	Dummy cycle configuration	00h = Identical to 1Fh 01h = 1 dummy cycle 02h = 2 dummy cycle 03h to 1Dh = 3 to 29 dummy cycles 1Eh = 30 dummy cycles 1Fh = Default Others = Reserved	Sets the number of dummy cycles subsequent to all FAST READ commands (See the Command Set Table for default setting values).	1
00h	[7:0]	I/O mode	FFh = Extended SPI (Default) DFh = Extended SPI without DQS E7h = Octal DDR C7h = Octal DDR without DQS Others = Reserved	Sets the device to work in different I/O modes such as DDR mode or DQS mode (Strobe enabled)	2

Notes:

^{1.} The number of cycles must be set to accord with the clock frequency, which varies by the type of FAST READ command (See Supported Clock Frequency Table). Insufficient dummy clock cycles for the operating frequency causes the memory to read incorrect data.

2. For parts configured with pin configuration option "Boot in DDR x8" the default value of this byte is FFh. On those parts it's not possible to configure the parts to work in extended SPI using NVCR. Only Octal DDR with DQS mode is supported.

6.5 VOLATILE CONFIGURATION REGISTER

Volatile configuration register bits temporarily set the device configuration after power-up or reset. All bits are erased (FFh) unless stated otherwise. This register is read from and written to using the READ VOLATILE CONFIGURATION REGISTER and WRITE VOLATILE CONFIGURATION REGISTER commands, respectively. The commands use the main array address scheme, but only the LSB is used to access different register settings, thereby providing up to 256 bytes of registers. A READ command from reserved address returns FFh. A WRITE command to a reserved setting is ignored, flag status register bit 1 is set, and the write enable latch bit is cleared.

Table 6.6 Volatile Configuration Register

Address	Bit	Name	Settings	Description	Notes
FFh:12h		Reserved	Reserved	Reserved	
	[7:5]	Reserved	Reserved	00 = No Active program/erase operation 00 = program/erase operation in bank 0 01 = program/erase operation in bank 1 10 = program/erase operation in bank 2 Indicates Active program/erase operation at specific bank. Useful for read while program/erase operation.	
11h	[4:0]	BANKSTAT	00000 = No Active program/erase operation 00100 = program/erase operation in bank 0 00101 = program/erase operation in bank 1 00110 = program/erase operation in bank 2		
10h	[7:0]	ECCFCA ⁽⁴⁾	Chunk address, [AA31:A24]	1st ECC Event occurred chunk address ; 1-	
0Fh	[7:0]	ECCFCA ⁽⁴⁾	Chunk address, [A23:A16]	bit correction event or 2-bit detection event	
0Eh	[7:0]	ECCFCA ⁽⁴⁾	Chunk address, [A15:A8]	will be depends on setting of ERRBECC bit (bit 2 of address 0Bh)	
0Dh	[7:4]	ECCFCA ⁽⁴⁾	Chunk address, [A7:A4]	5 N (6 N 2 6) addition 62 N	
ODII	[3:0]	Reserved	Reserved (outputs 0000)	Reserved	
	[7]	IPA_ECCB ⁽⁴⁾	0 = NO double programming or partial programming attempt within ECC chunk without erase (default) 1 = Yes double programming or partial programming attempt within ECC chunk without erase.	Indicates if there is an attempt for Incremental (Double) Programming within ECC boundary. Incremental programming is not allowed within ECC boundary when ECC is ON.	
0Ch	[6:3]	ECCCOUNTER ⁽	0000 = NO ECC correction event (default) 0001 = 1 correction event 1111 = 15 correction events	Store cumulative ECC correction occurrence. Max. 15 ECC correction occurrence can be stored, and stays 15 after further occurrence.	2
	[2]	ECCSTAT ⁽⁴⁾	0 = No error (default) 1 = 2-bit Error Detection	Indicates any 2-bit Error detection	
	[1]	PARSTAT	0 = No error (default) 1= Address Parity Error	Indicates any Address Parity Error detection	
	[0]	CRCSTAT	0 = No error (default) 1= Program Array Data CRC Error	Indicates any Program Array Data CRC Error detection	

Table 6.6 Volatile Configuration Register (Continued)

Address	Bit	Name	Settings	Description	Notes
	Reserved	Reserved	Reserved	Reserved	
	[6]	SSOENB	1 = All 8 DQs are same (Default) 0 = DQ3 is inverted, and remaining IOs are same.	SSO pattern of DLP Enabled or Disabled. SSO pattern means IO3 is inverted and other 7 IOs are the same.	
	[5:4]	CRCSIZE	11 = 16-byte (Default) 10 = 32-byte 01 = 64-byte 00 = 128-byte	Selects chunk size for Program CRC operation.	
0Bh	[3] CRCENB		1 = CRC Disabled (Default) 0 = CRC Enabled	Address Parity and Array Data Parity Enabled or Disabled in Octal DDR mode.	
	[2]	ERRBECC	1 = ERR# indicates 2-bit detection.(Default) 0 = ERR# LOW indicates 1-bt correction.	ERR# LOW behavior for 1-bit correction or 2-bit detection out of ECC event. Also it will determine ECC error type for ECCFCA bits. Only valid when ECCENB bit is 0.	
	[1]	ERRBENB	1 = ERR# OFF (Default) 0 = ERR# ON	Enable or disable ERR# signal, which indicates ERR error	
	[0] ECCENB		1 = ECC OFF (Default) 0 = ECC ON	Enables or Disables ECC	
0Ah	[7:0]	DLP Pattern	55h = 01010101 (Default), Bit 7 is an MSB	Data Learning Pattern for training.	
09h:08h		Reserved	Reserved	Reserved	

Table 6.6 Volatile Configuration Register (Continuted)

Address	Bit	Name	Settings	Description	Notes
07h	[7:0]	Wrap configuration	FFh = Continuous (Default) FEh = 64-byte wrap FDh = 32-byte wrap FCh = 16-byte wrap Others = Reserved	Enables the device to read from memory sequentially or to wrap within 16-, 32-, or 64-byte boundaries	
06h	[7:0]	XIP Configuration	FFh = XIP disabled (Default) FEh = XIP enabled Others = Reserved	Enables the device to operate in the selected XIP mode. It is first required to enable XIP and then enter XIP mode using the XIP confirmation bit.	
05h	[7:0]	Beyond 128Mb address configuration	FFh = 3-byte address (Default) FEh = 4-byte address Others = Reserved	Defines the number of address bytes for a command.	
04h	[7:0]	Reserved	Reserved	Reserved	
03h	[7:0]	Programmable output drive strength	FFh = 50 ohm (Default) FEh = 35 ohm FDh = 25 ohm FCh = 18 ohm Others = Reserved	Optimizes the impedance at VCC/2 output voltage.	
02h	[7:0]	Reserved	Reserved	Reserved	
01h	[7:0]	Dummy cycle configuration	00h = Identical to 1Fh 01h = 1 dummy cycle 02h = 2 dummy cycle 03h to 1Dh = 3 to 29 dummy cycles 1Eh = 30 dummy cycles 1Fh = Default Others = Reserved	Sets the number of dummy cycles subsequent to all FAST READ commands (See the Command Set Table for default setting values).	1
00h	[7:0]	I/O mode	FFh = Extended SPI (Default) DFh = Extended SPI without DQS E7h = Octal DDR C7h = Octal DDR without DQS Others = Reserved	Sets the device to work in different I/O modes such as DDR mode or DQS mode (Strobe enabled)	3

Note:

- The number of cycles must be set to accord with the clock frequency, which varies by the type of FAST READ command (See Supported Clock Frequency Table). Insufficient dummy clock cycles for the operating frequency causes the memory to read incorrect data.
- 2. ECC failure chunk counter (bit [6:3] of address 0Ch) stops counting once reach maximum value 15.
- 3. For parts configured with pin configuration option "Boot in DDR x8" the default value of this byte is FFh. On those parts it's not possible to configure the parts to work in extended SPI using VCR. Only Octal DDR with DQS mode is supported.
- 4. 1Gb is an MCP of 4 units of 256Mb. So ECC status have separate bits per each die. Host could get individual ECC information per each die. To get ECC information of die 0, dummy read from die 0 must be provided before reading die 0 ECC information of read volatile configuration register command (85h). After ECC information from die 0, dummy read from die 1 + 85h command is needed for die1 ECC information.

Table 6.7 Maximum Clock Frequencies – SDR and DDR Read Starting at Any Byte Address

IS25WX (VCC = 1.7V to 1.95V)

Number of Dummy Clock	Fast Read	Octal Outp	ut Fast Read	Octal I/O	Fast Read	Octal DDR
Cycles	SDR (1S-1S-1S)	SDR (1S-1S-8S)	DDR (1S-1D-8D)	SDR (1S-8S-8S)	DDR (1S-8D-8D)	(8D-8D-8D)
1	100	16	NA	NA	NA	NA
2	116	33	16	NA	NA	NA
3	133	50	33	16	16	16
4	150	66	50	33	33	33
5		83	66	50	50	50
6		100	83	66	66	66
7		116	95	76	76	76
8		133	114	86	86	86
9		143	124	95	95	95
10		152	133	105	105	105
11]	162	143	114	114	114
12	100		152	124	124	124
13	166		162	133	133	133
14]		171	143	143	143
15]		181	152	152	152
16	1	166	191	162	162	162
17					171	171
18			200	400	181	181
19	1		200	166	191	191
20 and above					200	200

IS25LX (VCC = 2.7V to 3.6V)

Number of Dummy Clock	Fast Read	Octal Outp	ut Fast Read	Octal I/O	Octal I/O Fast Read		
Cycles	SDR (1S-1S-1S)	SDR (1S-1S-8S)	DDR (1S-1D-8D)	SDR (1S-8S-8S)	DDR (1S-8D-8D)	Octal DDR (8D-8D-8D)	
1	100	16	NA	NA	NA	NA	
2	116	33	16	NA	NA	NA	
3		50	33	16	16	16	
4]	66	50	33	33	33	
5		83	66	50	50	50	
6]	100	83	66	66	66	
7]	116	95	76	76	76	
8	133		105	86	86	86	
9			114	95	95	95	
10		400	124	105	105	105	
11]	133		114	114	114	
12	1		133	124	124	124	
13 and above	1			133	133	133	

Note:

^{1.} Values are guaranteed by characterization and not 100% tested in production

Table 6.8 Maximum Clock Frequencise – SDR and DDR Read Starting at 4-Byte Address IS25WX (VCC = 1.7V to 1.95V)

Number of Dummy Clock	Fast Read	Octal Outp	ut Fast Read	Octal I/O	Fast Read	Octal DDR
Cycles	SDR (1S-1S-1S)	SDR (1S-1S-8S)	DDR (1S-1D-8D)	SDR (1S-8S-8S)	DDR (1S-8D-8D)	(8D-8D-8D)
1	100	16	NA	NA	NA	NA
2	116	33	16	NA	NA	NA
3	133	50	33	16	16	16
4	150	66	50	33	33	33
5	166	83	66	50	50	50
6		100	83	66	66	66
7	1	116	100	83	83	83
8	1	133	114	100	95	95
9	1	150	124	116	105	105
10]	166	133	133	114	114
11]		143	143	124	124
12	400		152	152	133	133
13	166		162	162	143	143
14]		171	166	152	152
15	1	166	181		162	162
16			191	1	171	171
17	1		200	166	181	181
18	1		200]	191	191
19 and above	1		200		200	200

IS25LX (VCC = 2.7V to 3.6V)

Number of Dummy Clock	Fast Read	Octal Outpo	ut Fast Read	Octal I/O	Octal DDR	
Cycles	SDR (1S-1S-1S)	SDR (1S-1S-8S)	DDR (1S-1D-8D)	SDR (1S-8S-8S)	DDR (1S-8D-8D)	(8D-8D-8D)
1	100	16	NA	NA	NA	NA
2	116	33	16	NA	NA	NA
3		50	33	16	16	16
4		66	50	33	33	33
5		83	66	50	50	50
6		100	83	66	66	66
7	400	116	100	83	83	83
8	133		114	100	95	95
9			124	116	105	105
10		133			114	114
11			133	133	124	124
12 and above					133	133

Note:

^{1.} Values are guaranteed by characterization and not 100% tested in production

Table 6.9 Sequence of Bytes During Wrap

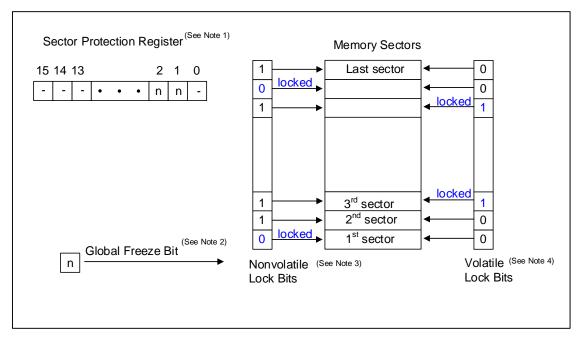
Starting Address	Starting Address 16-Byte Wrap		64-Byte Wrap
0	0-1-2 15-0-1	0-1-2 31-0-1	0-1-2 63-0-1
1	1-2-3 15-0-1-2	1-2-3 31-0-1-2	1-2-3 63-0-1-2
15	15-0-1 15-0-1-2	15-0-1 31-0-1-2	15-0-1 63-0-1-2
31	-	31-0-1 31-0-1-2	31-0-1 63-0-1-2
63	-	-	63-0-1 63-0-1-2

Table 6.10 SSO (Simultaneous Switching Ouput) Pattern Selection Bit Table

SSOSEL (bit 6, 0Bh)	IO Pattern	DQ0~DQ2, DQ4~DQ7	DQ3
Bit 6 = 1 (default; SSO disabled)	All 8 DQs are same	0011 0101	0011 0101
Bit 6 = 0 (SSO enabled)	DQ3 is inverted (7 DQs are same)	0011 0101	1100 1010

Note:

1. Training pattern can be written to DLPPTN bits (bit [7:0], address 0Ah). Bit 7 maps to 1st Training Data of MSB.


The default pattern is "0101 0101" for all 8 DQs (no SSO pattern).

6.6 SECURITY REGISTERS

Security Registers enable sector and password protection on multiple levels using non-volatile and volatile register and bit settings.

Figure 6.2 Sector and Password Protection

Notes:

- 1. Sector protection register: This 16-bit nonvolatile register includes two active bits [2:1] to enable sector and password protection.
- 2. Global freeze bit: This volatile bit protects the settings in all nonvolatile lock bits.
- 3. **Nonvolatile lock bits:** Each nonvolatile bit corresponds to and provides nonvolatile protection for an individual memory sector (128KB), which remains locked (protection enabled) until its corresponding bit is cleared to 1.
- 4. **Volatile lock bits:** Each volatile bit corresponds to and provides volatile protection for an individual memory sector (128KB), which is locked temporarily(protection is cleared when the device is reset or powered down)
- In an optional device of 64KB sector size, nonvolatile lock bits and volatile lock bits for ASP (Advanced Sector Protection) correspond to 128KB sector size instead of 64KB. But traditional BP protection correspond to 64KB sector size.

Sector Protection Security Register

Table 6.11 Sector Protection Security Register

Bits	Name	Settings	Description	Notes
15:3	Reserved	1 = Default	-	
2	Password protection lock	1 = Disabled (Default) 0 = Enabled	OTP bit: When set to 1, and password protection is disabled. When set to 0, password protection is enabled permanently; the 64-bit password cannot be retrieved or reset.	1, 2
1	Sector protection lock	1 = Enabled, with password protection (Default) 0 = Enabled, without password protection	oth bit: When set to 1, nonvolatile lock bits can be set to lock/unlock their corresponding memory sectors; bit 2 can be set to 0, enabling password protection permanently. When set to 0, nonvolatile lock bits can be set to lock/unlock their corresponding memory sectors; bit 2 must remain set to 1, disabling password protection permanently.	1, 3, 4
0	Reserved	1 = Default	-	

Notes:

- 1. **Bit 2 and bit 1 are user-configurable, one-time-programmable, and mutually exclusive in that only one of them can be set to 0.** It is recommended that one of the bits be set to 0 when first programming device when using Advanced Sector Protection.
- 2. The 64-bit password must be programmed and verified before this bit set to 0 because after it is set, password changes are not allowed, thus providing protection from malicious software. When this bit is set to 0, a 64-bit password is required to reset the global freeze bit from 0 to 1. In addition, if password is incorrect or lost, the global freeze bit can no longer be set and nonvolatile lock bits cannot be changed.
- 3. Whether this bit is set to 1 or 0, it enables programming or erasing nonvolatile lock bits (which provide memory sector protection). The password protection bit must be set beforehand because setting this bit will either enable password protection permanently (bit 2 = 0) or disable password protection permanently (bit 1 = 0)
- By default, all sectors are unlocked with device shipped from the factory. Sectors are locked, unlocked, read, or lock down as explained in the Nonvolatile and Volatile Lock Bits table and the volatile Lock Bit Register Bit Definitions table.

Table 6.12 Global Freeze Bit

Bits	Name	Settings	Description
7:1	Reserved	0	Bit values are 0
0	Global freeze bit	1 = Disabled (Default) 0 = Enabled	Volatile bit: When set to 1, all nonvolatile lock bits can be set to enable or disable locking their corresponding memory sectors. When set to 0, nonvolatile lock bits are protected from PROGRAM or ERASE commands. This bit should not be set to 0 until the nonvolatile lock bits are set.

Note:

1. The READ GLOBAL FREEZE BIT command enables reading this bit. When password protection is enabled, this bit is locked upon device power-up or reset. It cannot be changed without the password. After the password is entered, the UNLOCK PASSWORD command resets this bit to 1, enabling programming or erasing the nonvolatile lock bits. After the bits are changed, the WRITE GLOBAL FREEZE BIT command sets this bit to 0, protecting the nonvolatile lock bits from PROGRAM or ERASE operations.

6.7 NONVOLATILE LOCK BIT AND VOLATILE LOCK BIT SECURITY REGISTERS

Table 6.13 Nonvolatile and volatile lock bits

Bit Details	Nonvolatile Lock Bit	Volatile Lock Bit
Description	Each sector of memory has one corresponding nonvolatile lock bit	Each sector of memory has one corresponding nonvolatile lock bit; this bit is the sector write lock bit described in the Volatile Lock Bit Register table.
Function	When set to 0, locks and protects its corresponding memory sector from PROGRAM or ERASE operations. Because this bit is nonvolatile, the sector remains locked, protection enabled, until the bit is cleared to 1.	When set to 1, locks and protects its corresponding memory sector from PROGRAM or ERASE operations. Because this bit is volatile, protection is temporary. The sector is unlocked, protection disabled, upon device reset or power-down.
Settings	1 = Lock disabled 0 = Lock enabled	0 = Lock disabled 1 = Lock enabled
Enabling protection	The bit is set to 0 by the WRITE NONVOLATILE LOCK BITS command, enabling protection for designated locked sectors. Programming a sector lock bit requires the typical byte program time.	When set to 1, locks and protects its corresponding memory sector from PROGRAM or ERASE operations. Because this bit is volatile, protection is temporary. The sector is unlocked, protection disabled, upon device reset or power-down.
Disabling protection	All bits are cleared to 1 by ERASE NONVOLATILE LOCK BITS command, unlocking and disabling protection, unlocking and disabling protection for all sectors simultaneously. Erasing all sector lock bits requires typical sector erase time.	All bits are cleared to 0 upon reset or power-down, unlocking and disabling protection for all sectors.
Reading the bit	Bits are read by the READ NONVOLATILE LOCK BITS command.	Bits are read by the READ VOLATILE LOCK BITS command.

NONVOLATILE LOCK BIT SECURITY REGISTER

For nonvolatile sector locking, the nonvolatile lock bits are stored in the flash cells within an erasable sector lock-bit array, hence, making this a nonvolatile locking scheme. An erased flash cell corresponds to an unlocked sector and programmed flash cell corresponds to a locked sector.

One of nonvolatile lock bit is related to each sector, the nonvolatile lock bits are programmed individually but must be erased as a group.

Programming nonvolatile lock bits requires the typical byte programming time. Erasing all the nonvolatile lock bits requires typical sector erase time.

Table 6.14 Nonvolatile Lock Bit Register

Nonvolatile Lock Bit Register	Protection Status
00h	Sector protected from modify operations
FFh	Sector unprotected from modify operations (default)

VOLATILE LOCK BIT SECURITY REGISTER

One volatile lock bit register is associated with each sector of memory. It enables the sector to be locked, unlocked, or locked-down with the WRITE VOLATILE LOCK BITS command, which executes only when sector lock down (bit 1) is set to 0. Each register can be read with the READ VOLATILE LOCK BITS command.

Table 6.15 Volatile lock bit register

Bits	Name	Settings	Description
7:2	Reserved	0	Bit values are 0-
1	Sector lock down	0 = lock-down disabled (Default) 1 = lock-down enabled	Volatile bit: Device always powers up with this bit set to 0 so that sector lock down and sector write protect bits can be set to 1. When this bit is set to 1, neither of the two volatile bits can be written to until the next power cycle, hardware, or software reset.
0	Sector write protect	0 = Write protect disabled (Default) 1 = Write protect enabled	Volatile bit: Device always powers up with this bit set to 0 so that PROGRAM or ERASE operations in this sector can be executed and sector content modified. When this bit is set to 1, PROGRAM and ERASE operations in this sector are not executed.

6.8 PROTECTION MANAGEMENT REGISTER

The device offers enhanced security features that can be enabled by properly setting the protection management register (PMR).

The PMR bits can be read from or written to using the READ PROTECTION MANAGEMENT REGISTER and WRITE PROTECTION MANAGEMENT REGISTER commands.

When the PMR lockdown bit (bit 2) is set to 0, the device will no longer respond to WRITE PROTECTION MANAGEMENT REGISTER commands. If this command is issued, the register will remain unchanged and the device will set an error code in flag status register bits 1 and 4.

Note: If the enhanced security features (activated through the PMR) are not going to be used, **programming bit 2 of the PMR to 0 is strongly recommended**. This prevents any future unintentional operation on this register that could result in permanent and irreversible locking of the memory sectors.

Table 6.16 Protection Management Register

Bit	Name	Settings	Description	Notes
7	Reserved	Reserved	Reserved	
6	Reserved	Reserved	Reserved	
5	Reserved	Reserved	Reserved	
4	Status Register Lock	0 = Lock 1 = Unlock (Default)	OTP control bit: Permanently locks the status register, further writes to SR not allowed regardless of the state of W# pin and write enable/disable bit of the status register.	
3	Reserved	Reserved	Reserved	
2	PMR Lockdown	0 = Lock 1 = Unlock (Default)	OTP control bit: Permanently locks the protection management register.	
1	Nonvolatile sector lock bit register lockdown	0 = Lock 1 = Unlock (Default)	OTP control bit: Permanently locks the contents of the nonvolatile sector lock bit register.	1
0	Nonvolatile sector lock bit erase lock	0 = Lock 1 = Unlock (Default)	OTP control bit: When this bit is set to 1, the nonvolatile sector lock bit register array is erasable; otherwise, it is unerasable.	

Note:

1. When this bit is set to 0, the nonvolatile lock bits are locked from PROGRAM and ERASE operations permanently.

PROTECTION MANAGEMENT REGISTER Operations

Protection management register bits can be read with the READ PROTECTION MANAGEMENT REGISTER (2Bh) command. They can be programmed independently or collectively with the WRITE PROTECTION MANAGEMENT REGISTER command (68h).

The bits are one-time programmable and cannot be erased.

To initiate a READ PROTECTION MANAGEMENT command, S# is driven LOW. For extended SPI protocol, input is on DQ0, output on DQ1. For Octal DDR Protocol, input/output is on DQ [7:0]. The operation is terminated by driving S# HIGH at any time during data output.

Before a WRITE PROTECTION MANAGEMENT REGISTER command is initiated, the WRITE ENABLE command must be executed to set the write enable latch bit to 1. To initiate a command, S# is driven LOW and held LOW until the eighth bit of the last data byte has been latched in, after which it must be driven HIGH. For the extended SPI and Octal DDR protocols, input is on DQ0, and DQ [7:0], respectively, followed by the data bytes. If S# is not driven HIGH, the command is not executed, error bits are not set, and the write enable latch remains set to 1. The operation is self-timed and its duration is tPPMR.

Table 6.17 Protection Management Register Operations

Operation Name	Description
READ PROTECTION MANAGEMENT REGISTER (2Bh)	The command does not require dummy cycles in extended SPI protocol, while 8 dummy cycles are necessary in Octal DDR protocol. When the register is read continuously, the same byte is output repeatedly.
WRITE PROTECTION MANAGEMENT REGISTER (68h)	When an operation is in progress, the write in progress bit is set to 1. The write enable latch bit is cleared to 0, whether the operation is successful or not. The status register and flag status register can be polled for the operation status. When the operation completes, the write in progress bit is cleared to 0, whether the operation is successful or not. For stacked devices, it is possible to obtain the operation status by reading the flag status register a number of times corresponding to the die stacked, with S# toggled in between the READ FLAG STATUS REGISTER commands. When the operation completes, the program or erase controller bit of the flag status register is cleared to 1. The end of operation can be detected when the program or erase controller bit of the flag status register outputs 1 for all the die of the stack. When a 0 is written to any reserved field, the operation is initiated; however, uCode aborts the operation without programming any bits. Then the write enable latch bit is cleared, and the programming error bit and protection error bits are set to 1. When protection management bit 2 is set to 0 (locked), the command is not executed, the write enable latch remains set to 1, and flag status register and protection error bits are set to 1.

7. DEVICE ID DATA

The device ID data shown in the tables here is read by the READ ID and MULTIPLE I/O READ ID operations.

Table 7.1 Device ID Data

Byte#	Name	Value	Assigned by					
Manufacturer	Manufacturer ID (1 Byte total)							
1	Manufacturer ID (1 Byte)	9Dh	JEDEC					
Device ID (2	Bytes total)							
2	Momony Type (4 Pyte)	5Ah = 3V						
2	Memory Type (1 Byte)	5Bh = 1.8V						
		1Ch = 2Gb	Manufacturer					
3	Memory Density (1 Byte)	1Bh = 1Gb						
		1Ah = 512Mb						
Unique ID (17	7 Bytes total)							
4	Indicates the number of remaining ID bytes (1 Byte)	10h						
5	Extended device ID (1 Byte)	See below Table 7.2	Factory					
6	Device configuration information (1 Byte)	See below Table 7.3	Factory					
7:20	Customized factory data (14 Bytes)	Unique ID code (UID)						

Table 7.2 Extended Device ID Data, First Byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Device Generation 0 = 1st generation	Reserved	Reserved	Reserved	Reserved	Sector Size: 01 = Uniform 02 = Uniform 6	

Note:

1. 64KB is for optional device. See the Ordering Information for optional 64KB sector size.

Table 7.3 Device Configuration Information Data

Bit 7	Bit 6	Bit 5	Bit4	Bit 3	Bit 2	Bit 1	Bit 0
Reserved	Reserved	Reserved	Reserved	Reserved	Boot up protocol: 0 = Boot in SDR x1 1 = Boot in DDR x8	Reserv	ved

8. DEVICE OPERATION

8.1 BASIC DEVICE OPERATION

- Before a command is issued, status register should be checked to ensure device is ready for proper operation.
- When incorrect command is inserted, the device becomes standby mode and keeps the standby mode until next S# falling edge.
- When correct command is inserted, the device becomes active mode, and keeps active mode until next S# rising edge.
- While a Status Register Write operation or any Nonvolatile Register Write operation, access to any memory array is not allowed
- While Program or Erase of memory array is in progress in one bank, Fast Read Array data Command can be issued on any of the three non-busy banks (Read while Program/Erase Operation).

8.2 COMMAND SET SUMMARY

Table 8.1 Commend Set

Command	Code	Extended SPI		Octal DDR		Address	Data
		Command- Address-Data	Dummy Clock Cycles	Command- Address-Data	Dummy Clock Cycles	Bytes	Bytes
Software RESET Operations							
RESET ENABLE	66h	1-0-0	0	8-0-0	0	0	0
RESET MEMORY	99h	1-0-0	0	8-0-0	0	0	0
READ ID Operations	•	•	•	•	•	•	•
READ ID	9E/9Fh	1-0-1	0	8-0-8	8	0	1 to 20
READ SFDP	5Ah	1-1-1	8	8-8-8	8	3 (1)	1 ~
READ MEMORY Operations			•	•	•	•	
READ	03h	1-1-1	0	-	-	3/4 (2)	1 ~
FAST READ	0Bh	1-1-1	8	8-8-8	16	3/4 (2)	1 ~
OCTAL OUTPUT FAST READ	8Bh	1-1-8	8	8-8-8	16	3/4 (2)	1 ~
OCTAL I/O FAST READ	CBh	1-8-8	16	8-8-8	16	3/4 (2)	1 ~
DDR OCTAL OUTPUT FAST READ	9Dh	1-1-8	8	8-8-8	16	3/4 (2)	1 ~
DDR OCTAL I/O FAST READ	FDh	1-8-8	16	8-8-8	16	4	1 ~
READ MEMORY Operations	with 4-By	te Address	•	•	•	•	•
4-BYTE READ	13h	1-1-1	0	-	-	4	1 ~
4-BYTE FAST READ	0Ch	1-1-1	8	8-8-8	16	4	1 ~
4-BYTE OCTAL OUTPUT FAST READ	7Ch	1-1-8	8	8-8-8	16	4	1 ~
4-BYTE OCTAL I/O FAST READ	CCh	1-8-8	16	8-8-8	16	4	1 ~
WRITE Operations	•	•	•	•	•	•	•
WRITE ENABLE	06h	1-0-0	0	8-0-0	0	0	0
WRITE DISABLE	04h	1-0-0	0	8-0-0	0	0	0
READ REGISTER Operations	; ;	•	•	•	-1	•	
READ STATUS REGISTER	05h	1-0-1	0	8-0-8	8	0	1 ~
READ FLAG STATUS REGISTER	70h	1-0-1	0	8-0-8	8	0	1 ~
READ NONVOLATILE CONFIGURATION REGISTER	B5h	1-1-1	8	8-8-8	8	3/4 (2)	1 ~
READ VOLATILE CONFIGURATION REGISTER	85h	1-1-1	8	8-8-8	8	3/4 (2)	1 ~
READ PROTECTION MANAGEMENT REGISTER	2Bh	1-0-1	0	8-0-8	8	0	1 ~

Command Set (Continued)

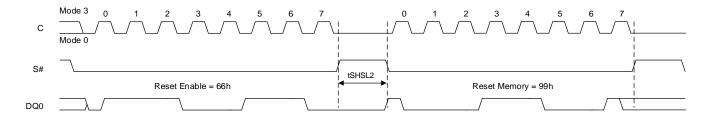
Command	Code	Extended SPI		Octal DDR		Address	Data
		Command- Address-Data	Dummy Clock Cycles	Command- Address-Data	Dummy Clock Cycles	Bytes	Bytes
WRITE REGISTER Operation	s						
WRITE STATUS REGISTER	01h	1-0-1	0	8-0-8	0	0	1
WRITE NONVOLATILE CONFIGURATION REGISTER	B1h	1-1-1	0	8-8-8	0	3/4 (2)	1
WRITE VOLATILE CONFIGURATION REGISTER	81h	1-1-1	0	8-8-8	0	3/4 (2)	1
WRITE PROTECTION MANAGEMENT REGISTER	68h	1-0-1	8	8-0-8	0	0	1
CLEAR Operations							
CLEAR FLAG STATUS REGISTER	50h	1-0-0	0	8-0-0	0	0	0
CLEAR ERRB	B6h	1-0-0	0	8-0-0	0	0	0
PROGRAM Operations							
PAGE PROGRAM	02h	1-1-1	0	8-8-8	0	3/4 (2)	1 to 25
OCTAL INPUT FAST PROGRAM	82h	1-1-8	0	8-8-8	0	3/4 (2)	1 to 25
EXTENDED OCTAL INPUT FAST PROGRAM	C2h	1-8-8	0	8-8-8	0	3/4 (2)	1 to 25
PROGRAM Operations with	4-BYTE A	ddress					
4-BYTE PAGE PROGRAM	12h	1-1-1	0	8-8-8	0	4	1 to 25
4-BYTE OCTAL INPUT FAST PROGRAM	84h	1-1-8	0	8-8-8	0	4	1 to 25
4-BYTE EXTENDED OCTAL INPUT FAST PROGRAM	8Eh	1-8-8	0	8-8-8	0	4	1 to 25
ERASE Operations							
32KB SUBSECTOR ERASE	52h	1-1-0	0	8-8-0	0	3/4 (2)	0
4KB SUBSECTOR ERASE	20h	1-1-0	0	8-8-0	0	3/4 (2)	0
128KB SECTOR ERASE	D8h	1-1-0	0	8-8-0	0	3/4 (2)	0
CHIP ERASE	C7h/60h	1-0-0	0	8-0-0	0	0	0
ERASE Operations with 4-B	TE Addre	ess					
4-BYTE 32KB SUBSECTOR ERASE	5Ch	1-1-0	0	8-8-0	0	4	0
4-BYTE 4KB SUBSECTOR ERASE	21h	1-1-0	0	8-8-0	0	4	0
4-BYTE 128KB SECTOR ERASE	DCh	1-1-0	0	8-8-0	0	4	0
SUSPEND/RESUME Operation	ons						
PROGRAM/ERASE SUSPEND	75h	1-0-0	0	8-0-0	0	0	0
PROGRAM/ERASE RESUME	7Ah	1-0-0	0	8-0-0	0	0	0
ONE-TIME PROGRAMMABLE	(OTP) O	perations					
READ OTP ARRAY	4Bh	1-1-1	8	8-8-8	16	3/4 (2)	1 to 65
PROGRAM OTP ARRAY	42h	1-1-1	0	8-8-8	0	3/4 (2)	1 to 6
	L	1	ı			1	1

Commend Set (Continued)

Command		Extende	Extended SPI		Octal DDR		Data
	Code	Command- Address-Data	Dummy Clock Cycles	Command- Address-Data	Dummy Clock Cycles	Address Bytes	Bytes
4-BYTE ADDRESS MODE Op	erations						
ENTER 4-BYTE ADDRESS MODE	B7h	1-0-0	0	_(5)	_5)	0	1
EXIT 4-BYTE ADDRESS MODE	E9h	1-0-0	0	_ (5)	_(5)	0	1
DEEP POWER-DOWN Opera	tions			•			•
ENTER DEEP POWER-DOWN	B9h	1-0-0	0	8-0-0	0	0	0
RELEASE FROM DEEP POWER- DOWN	ABh	1-0-0	0	8-0-0	0	0	0
ADVANCED SECTOR PROTE	CTION O	perations	•	•	•	•	•
READ SECTOR PROTECTION	2Dh	1-0-1	0	8-0-8	8	0	1 ~
PROGRAM SECTOR PROTECTION	2Ch	1-0-1	0	8-0-8	0	0	2
READ VOLATILE LOCK BITS	E8h	1-1-1	0	8-8-8	8	3/4 (2)	1 ~
WRITE VOLATILE LOCK BITS	E5h	1-1-1	0	8-8-8	0	3/4 (2)	1
READ NONVOLATILE LOCK BITS	E2h	1-1-1	0	8-8-8	8	4	1 ~
WRITE NONVOLATILE LOCK BITS	E3h	1-1-0	0	8-8-0	0	4	0
ERASE NONVOLATILE LOCK BITS	E4h	1-0-0	0	8-0-0	0	0	0
READ GLOBAL FREEZE BIT	A7h	1-0-1	0	8-0-8	8	0	1 ~
WRITE GLOBAL FREEZE BIT	A6h	1-0-0	0	8-0-0	0	0	0
READ PASSWORD	27h ⁽³⁾	1-0-1	0	8-0-8	8	0	1 ~
WRITE PASSWORD	28h	1-0-1	0	8-0-8	0	0	8
UNLOCK PASSWORD	29h	1-0-1	0	8-0-8	0	0	8
ADVANCED SECTOR PROTE	CTION O	perations wit	h 4-BYTE	Address	•	•	
4-BYTE READ VOLATILE LOCK BITS	E0h	1-1-1	0	8-8-8	8	4	1 ~
4-BYTE READ VOLATILE LOCK BITS	E1h	1-1-1	0	8-8-8	0	4	1
DATA LEARNING PATTERN	Operation	าร					
DATA LEARNING PATTERN READ	CDh	1-0-8	18(4)	8-0-8	18(4)	0	1~
		•	•	•	•		

- Read SFDP instruction accepts only 3-byte address even if the device is configured to 4-byte address mode. In Octal DDR mode, it will be fixed 4-byte address cycle.
- 2. Requires 4-byte of address if the device is configured to 4-byte address mode or Octal DDR protocol.
- 3. After the 8-bit instruction shifted in, the 64-bit data are shifted out, the last significant byte first, most significant bit of each byte first. The READ PASSWORD instruction is terminated by driving chip select (S#) HIGH at any time during data output. When read continuously, the device outputs 64-bit data repeatedly.
- 4. Dummy cycle for DLP Read operation is set by 01h of configuration register setting.
 - Dummy cycle for DLPRD = Dummy cycle setting of OCTAL DDR mode + 2 clock cycles. 18 clock cycle is a default setting.
- 5. If the device is configured to Octal DDR mode, it will be fixed 4-byte address mode regardless of B7h, E9h command.

8.3 SOFTWARE RESET OPERATIONS


RESET ENABLE and RESET MEMORY Commands

To initiate these commands, S# is driven LOW and the command code is input on DQ0. A minimum de-selection time of tSHSL2 must come between RESET ENABLE and RESET MEMORY or reset is not guaranteed. Then, S# must be driven HIGH for the device to enter power-on reset.

Table 8.2 RESET ENABLE and RESET MEMORY Commands

Operation Name	Description/Conditions
RESET ENABLE (66h)	To reset the device, the RESET ENABLE command must be followed by the RESET
RESET MEMORY (99h)	MEMORY command. When the two commands are executed, the device enters a power-on reset condition. It is recommended to XIP mode before executing these two commands. All volatile lock bits and volatile configuration register are reset to the power-on reset default condition according to nonvolatile configuration register settings. If a reset is initiated while a WRITE, PROGRAM, or ERASE operation is in progress or suspended, the operation is aborted and data may be corrupted. Reset is effective after the flag status register bit 7 outputs 1 with at least one byte output. A RESET ENABLE command is not accepted during WRITE STATUS REGISTER and WRITE NONVOLATILE CONFIGURATION REGISTER operations.

Figure 8.1 RESET ENABLE and RESET MEMORY - 66h and 99h

Note:

1. The Octal DDR protocol uses eight data pins to transmit information.

8.4 READ ID OPERATION

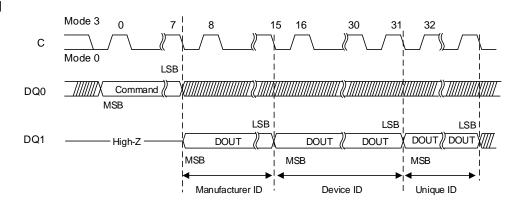

To initiate this command, S# is driven LOW and the command code is input on DQn. When S# is driven HIGH, the device goes to standby. The operation is terminated by driving S# HIGH at any time during data output.

Table 8.3 READ ID Operation

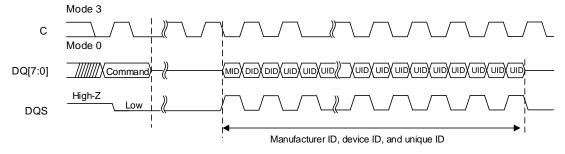

Operation Name	Description/Conditions	
READ ID (9Eh/9Fh)	Outputs information shown in the Device ID Data tables. If an ERASE or PROGRAM cycle is in progress when the command is initiated, the command is not decoded and the command cycle in progress is not affected.	

Figure 8.2 READ ID Command

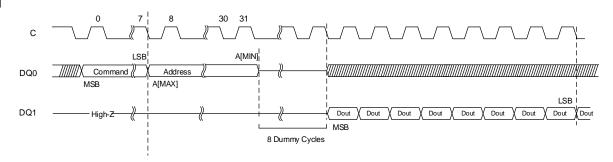
Extended

Octal DDR

Note:

1. S# not shown.

8.5 READ SFDP OPERATION


Read SFDP (Serial Flash Discovery Parameter) Command

To execute READ SFDP command, S# is driven LOW. The command code is input on DQ0, followed by three address bytes and eight dummy clock cycles. The device outputs the information starting from the specified address. When 256-byte boundary reached, the data output wraps to address 0 of SFDP table. The operation is terminated by driving S# HIGH at any time during data output.

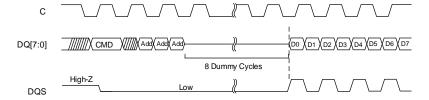

Note: The operation always executes in continuous mode so the read burst wrap setting in the volatile configuration register does not apply.

Figure 8.3 READ SFDP Command - 5Ah

Extended

Octal DDR

Note:

1. S# not shown.

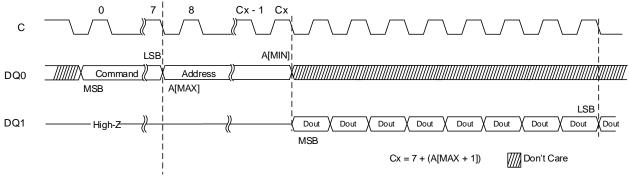
8.6 READ MEMORY OPERATION

To initiate a command, S# is driven LOW and the command code is input on DQn, followed by input of the address bytes on DQn. The operation is terminated by driving S# HIGH at any time during data output.

Table 8.4 READ MEMORY Operation

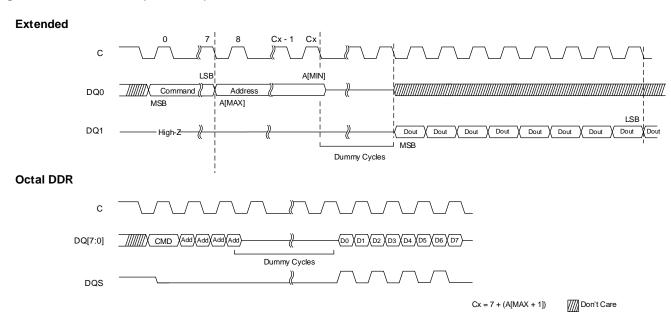
Operation Name		Description/Conditions
READ (03h)	1S-1S-1S	The device supports 3-byte addressing (default), with A [23:0] input during address cycle. After any READ command is executed, the device
FAST READ (0Bh)	1S-1S-1S	will output data from the selected address. After the boundary is reached, the device will start reading again from the beginning. Each address bit is latched in during the rising edge of the clock. The
OCTAL OUTPUT FAST READ (8Bh)	1S-1S-8S	addressed byte can be at any location, and the address automatically increments to the next address after each byte of data is shifted out;
OCTAL I/O FAST READ (CBh)	1S-8S-8S	therefore, a die can be read with a single command. FAST READ can operate at higher frequency (fC).
DDR OCTAL OUTPUT FAST READ(9Dh)	1S-1D-8D	DDR commands function in DDR protocol regardless of settings in the nonvolatile configuration register; Other commands function in DDR protocol only after DDR protocol is enabled by the register settings. Due to the nature of DDR protocol, an even number of bytes is always transferred. The LSB of the byte address shall always be zero when using DDR protocol. If LSB of the address is set to one when using DDR protocol, the results are indeterminate.

4-BYTE READ MEMORY Operations


Table 8.5 4-BYTE READ MEMORY Operation

Operation Name		Description/Conditions
4-BYTE READ (13h)	1S-1S-1S	READ MEMORY operations can be extended to a 4-byte address
4-BYTE FAST READ (0Ch)	1S-1S-1S	range, with A [31:0] input during address cycle. Selection of 3-byte or 4-byte address can be enabled in two ways: through nonvolatile configuration register or through the ENABLE 4-BYTE ADDRESS
4-BYTE OCTAL OUTPUT FAST READ (7Ch)	1S-1S-8S	MODE/EXIT 4-BYTE ADDRESS MODE commands. Each address bit is latched in during the rising edge of the clock. The
4-BYTE OCTAL I/O FAST READ (CCh)	1S-8S-8S	addressed byte can be at any location, and the address automatically increments to the next address after each byte of the data is shifted out; therefore, a die can be read with a single command.
DDR OCTAL I/O FAST READ (1) (FDh)	1S-8D-8D	FAST READ can operate at higher frequency (fC)

READ MEMORY Operations Timings


Figure 8.4 SDR READ (1S-1S-1S) - 03h/13h (2)

Notes:

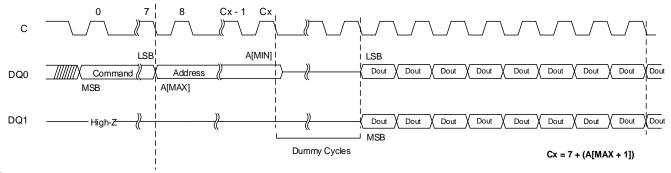
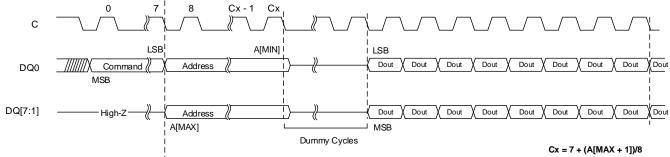

- 1. S# not shown.
- 2. READ and 4-BYTE READ COMMANDS

Figure 8.5 FAST READ (1S-1S-1S) - 0Bh/0Ch (3)

- Timing shows command code 0Bh but this timing also applies to the following DDR protocol command codes, for which
 device behavior is identical: 8Bh, CBh, 9Dh, FDh, 7Ch, and CCh.
- 2. S# not shown
- 3. FAST READ and 4-BYTE FAST READ COMMANDS


Figure 8.6 OCTAL OUTPUT FAST READ (1S-1S-8S) - 8Bh/7Ch (3)

Notes:

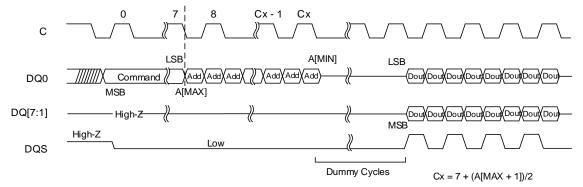
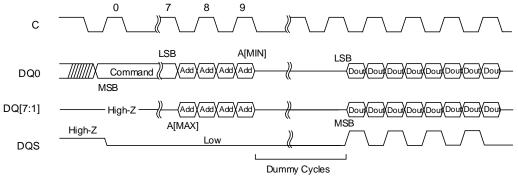

- Requires 32-bit address in 4-byte address configuration. In octal DDR protocol, the command, address, and data-out bits are transmitted on all eight data pins in DDR mode.
 The address is fixed with 4-byte.
- 2. S# not shown
- 3. OCTAL OUTPUT FAST READ and 4-BYTE OCTAL OUTPUT FAST READ COMMANDS

Figure 8.7 OCTAL I/O FAST READ (1S-8S-8S) - CBh/CCh (3)

- Requires 32-bit address in 4-byte address configuration. In octal DDR protocol, the command, address, and data-out bits are transmitted on all eight data pins in DDR mode. The address is fixed with 4-byte.
- 2. S# not shown
- 3. OCTAL I/O FAST READ and 4-BYTE OCTAL I/O FAST READ COMMANDS


Figure 8.8 DDR OCTAL OUTPUT FAST READ with DDR ADDRESS and DATA (1S-1D-8D)- 9Dh⁽³⁾

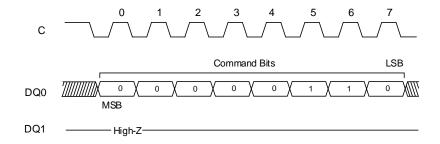
Notes:

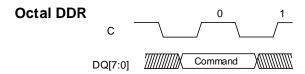
- Requires 32-bit address in 4-byte address configuration. In octal DDR protocol, the command, address, and data-out bits are transmitted on all eight data pins in DDR mode. The address is fixed with 4-byte.
- 2. S# not shown
- 3. DDR OCTAL OUTPUT FAST READ COMMAND. No 4-BYTE DDR OCTAL I/O FAST READ COMMAND.

Figure 8.9 4-BYTE DDR OCTAL I/O FAST READ with DDR ADDRESS and DATA (1S-8D-8D) - FDh(1)

- FDh (DDR OCTAL I/O FAST READ COMMAND) is 4-Byte Address command. Always requires 32-bit address. In octal DDR protocol, the command, address, and data-out bits are transmitted on all eight data pins in DDR mode.
- 2. S# not shown

8.7 WRITE ENABLE/DISABLE OPERATION


To initiate a command, S# is driven LOW and held LOW until the eight bit of the command code has been latched in, after which it must be driven HIGH. For extended and Octal SPI protocols respectively, the command code is input on DQ0 and DQ [7:0]. If S# is not driven HIGH after the command code has been latched in, the command is not executed, flag status register error bits are not set, and the write enable latch remains cleared to its default setting of 0, providing protection against errant data modification.


Table 8.6 WRITE ENABLE/DISABLE Operation

Operation Name	Description/Conditions
WRITE ENABLE	Sets the write enable latch bit before each PROGRAM, ERASE, and WRITE command
WRITE DISABLE	Clears the write enable latch bit. In case of a protection error, WRITE DISABLE will not clear the bit. Instead, a CLEAR FLAG STATUS REGISTER command must be issued to clear both flags.

Figure 8.10 WRITE ENABLE and WRITE DISABLE Timing

Extended

Notes:

WRITE ENABLE command sequence and code, shown here, is 06h (0000 0110 binary).
 WRITE DISABLE timing is identical, but its command code is 04h (0000 0100 binary).

8.8 READ REGISTER OPERATION

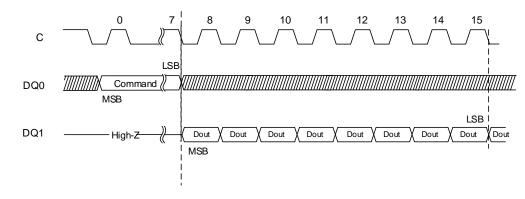

To initiate a command, S# is driven LOW. For extended SPI protocol, input is on DQ0, output on DQ1. For octal SPI protocol, I/O is on DQ [7:0]. The operation is terminated by driving S# HIGH at any time during data output.

Table 8.7 READ REGISTER Operations

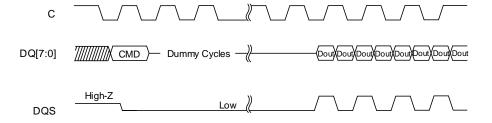
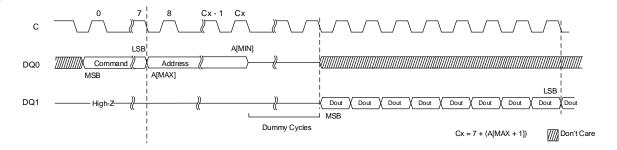

Operation Name	Description/Conditions
READ STATUS REGISTER (05h)	Can be read continuously and at any time, including during a PROGRAM,
READ FLAG STATUS REGISTER (70h)	ERASE, or WRITE OPERATION. If one of these operations is in progress, checking the write in progress bit or P/E controller bit is recommended before executing the command.
READ NONVOLATILE CONFIGURATION REGISTER (B5h)	When continuously read, the device outputs the same byte repeatedly. All reserved fields output a value of 1.
READ VOLATILE CONFIGURATION REGISTER (85h)	When continuously read, the device outputs the same byte repeatedly. All reserved fields output a value of 1.

Figure 8.11 READ STATUS REGISTER - 05h

Extended



Octal DDR

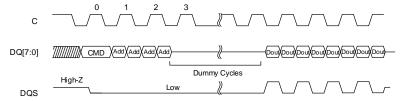


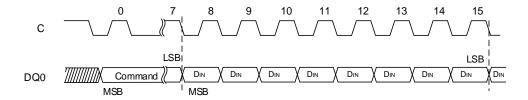
Figure 8.12 READ CONFIGURATION REGISTER - B5h/85h

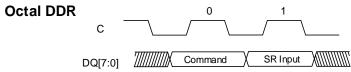
Extended

Octal DDR

- 1. S# not shown.
- 2. Requires 4-bytes of address if device is configured to 4-byte address mode.

8.9 WRITE REGISTER OPERATION

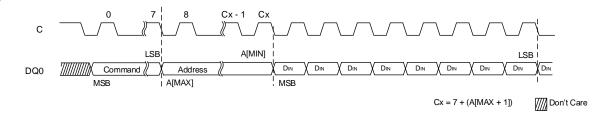

Before a WRITE REGISTER command is initiated, the WRITE ENABLE command must be executed to set the write enable latch bit to 1. To initiate a command, S# is driven LOW and held LOW until the eighth bit of the last data byte has been latched in, after which it must be driven HIGH; for the WRITE NONVOLATILE CONFIGURATION REGISTER command. For the extended and octal SPI protocols respectively, input is on DQ0 and DQ [7:0], followed by the data bytes. If S# is not driven HIGH, the command is not executed, flag status register bits are not set, and the write enable latch remains set to 1. The operation is self-timed and its duration is tW for WRITE STATUS REGISTER and tNVCR for WRITE NONVOLATILE CONFIGURATION REGISTER.

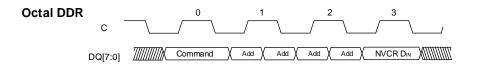

Table 8.8 WRITE REGISTER Operations

Operation Name	Description/Conditions
WRITE STATUS REGISTER (01h)	The WRITE STATUS REGISTER command writes new values to status register bits 7:2, enabling software data protection. The status register can also be combined with the W# signal to provide hardware data protection. This command has no effect on status register bits 1:0. For the WRITE STATUS REGISTER and WRITE NONVOLATILE CONFIGURATION REGISTER commands, when the operation is in progress, the write in progress bit is set to 1. The write enable latch bit is cleared to 0, whether the operation is successful or not. The status
WRITE NONVOLATILE CONFIGURATION	register and flag staus register can be polled for the operation status.
REGISTER (B1h)	When the operation completes, the write in progress bit is cleared to 0, whether the operation is successful or not.
WRITE VOLATILE CONFIGURATION	Because register bits are volatile, change to this bit is immediate.
REGISTER (81h)	Reserved bits are not affected by this command.

Figure 8.13 WRITE STATUS REGISTER - 01h

Extended




Note:

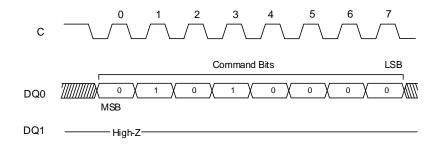
1. S# not shown.

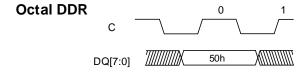
Figure 8.14 WRITE CONFIGURATION REGISTER - B1h/81h

Extended

- 1. S# not shown.
- 2. Requires 4-bytes of address if device is configured to 4-byte address mode.

8.10 CLEAR FLAG STATUS REGISTER OPERATION


To initiate a command, S# is driven LOW. For extended SPI protocol, input is on DQ0, output on DQ1. For octal SPI protocol, I/O is on DQ [7:0]. The operation is terminated by driving S# HIGH at any time.


Table 8.9 WRITE REGISTER Operations

Operation Name	Description/Conditions
CLEAR FLAG STATUS REGISTER (50h)	Resets the error bits (erase, program, and protection)

Figure 8.15 CLEAR FLAG STATUS REGISTER Timing - 50h

Extended

Note:

1. S# not shown.

8.11 PROGRAM OPERATION

Before a PROGRAM command is initiated, the WRITE ENABLE command must be executed to set the write enable latch bit to 1. To initiate a command, S# is driven LOW and held LOW until the eighth bit of the last data byte has been latched in, after which it must be driven HIGH. If S# is not driven HIGH, the command is not executed, flag status register error bits are not set, and the write enable latch remains set to 1. Each address bit is latched in during the rising edge of the clock. When a command is applied to a protected sector, the command is not executed, the write enable latch bit remains set to 1, and flag status register bits 1 and 4 are set. If the operation times out, the write enable latch bit is reset and the program fail bit is set to 1.

Note: The manner of latching data shown and explained in the timing diagrams ensures that the number of clock pulses is a multiple of one byte before command execution, helping reduce the effects of noisy or undesirable signals and enhancing device data protection.

Table 8.10 PROGRAM Operations

Operation Name	Description/Conditions
PAGE PROGRAM (02h)	A PROGRAM operation changes a bit from 1 to 0. When the operation is
	in progress, the write in progress bit is set to 1. The write enable latch bit
	is cleared to 0, whether the operation is successful or not. The status
	register and flag status register can be polled for the operation status.
OCTAL INPUT FAST PROGRAM (82h)	When the operation completes, the write in progress bit is cleared to 0.
	An operation can be paused or resumed by the PROGRAM/ERASE
	SUSPEND or PROGRAM/ERASE RESUME command, respectively.
	If the bits of the least significant address, which is the starting address,
EXTENDED OCTAL INPUT FAST PROGRAM	are not all zero, all data transmitted beyond the end of the current page
(C2h)	is programmed from the starting address of the same page. If the
	number of bytes sent to the device exceed the maximum page size,
	previously latched data is discarded and only the last maximum page-
	size number of data bytes are guaranteed to be programmed correctly
	within the same page. If the number of bytes sent to the device is less
	than the maximum page size, they are correctly programmed at the
	specified address without any effect on the other bytes of the same
	page. Due to its nature, Octal DDR operation requires bus transition in
	even number, therefore for program operation, the following restriction
	apply:
	- If there is a need to program from odd starting address, keep the
	even input address and the input data shall start with "FFh".
	- If there is a need to program with odd ending address, simply
	provide an extra data with "FFh" in the last falling edge of clock.

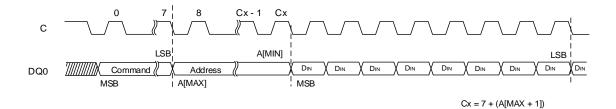
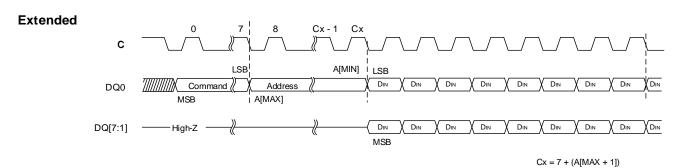

4-BYTE PROGRAM Operations

Table 8.11 4-BYTE PROGRAM Operations

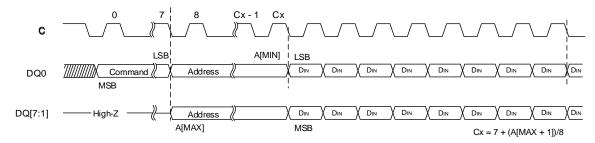
Operation Name	Description/Conditions
4-BYTE PAGE PROGRAM (12h)	PROGRAM operations can be extended to a 4-bytes address range, with [A31:0] input during address cycle. Selection of the 3-byte or 4-byte address range can be enabled in two
4-BYTE OCTAL INPUT FAST PROGRAM (84h)	ways: - through the nonvolatile configuration register.
4-BYTE EXTENDED OCTAL INPUT FAST PROGRAM (8Eh)	- through the ENABLE 4-BYTE ADDRESS MODE/EXIT 4-BYTE ADDRESS MODE commands.

Figure 8.16 PAGE PROGRAM - 02h/12h


Extended

Notes:

- Request 4-bytes of address if device is configured to 4-byte address mode.
- 2. In Octal DDR protocol, command, address, and data-input bits are transmitted on all eight DQ pins in DDR mode, and address is fixed with 4-byte mode.
- 3. S# is not shown. The operation is self-timed, and its duration is tPP.


Figure 8.17 OCTAL INPUT FAST PROGRAM - 82h/84h

- 1. Requires 4-bytes of address if device is configured to 4-byte address mode.
- 2. In Octal DDR protocol, command, address, and data-input bits are transmitted on all eight DQ pins in DDR mode, and address is fixed with 4-byte mode.
- 3. S# is not shown. The operation is self-timed, and its duration is tPP.

Figure 8.18 EXTENDED OCTAL INPUT FAST PROGRAM - C2h/8Eh

- 1. Requires 4-bytes of address if device is configured to 4-byte address mode.
- 2. In Octal DDR protocol, command, address, and data-input bits are transmitted on all eight DQ pins in DDR mode, and address is fixed with 4-byte mode.
- 3. S# is not shown. The operation is self-timed, and its duration is tPP.

8.12 ERASE OPERATION

An ERASE operation changes a bit from 0 to 1. Before any ERASE command is initiated, the WRITE ENABLE command must be executed to set the write enable latch bit to 1; if not, the device ignores the command and no error bits are set to indicate operation failure. S# is driven LOW and held LOW until eighth bit of the last data byte has been latched in, after which it must be driven HIGH. The operations are self-timed, and duration is tSSE, tSE, or tBE according to command.

If S# is not driven HIGH, the command is not executed, flag status register error bits are not set, and the write enable latch remains set to 1. A command applied to a protected subsector is not executed. Instead, the write enable latch bit remains set to 1, and flag status register bits 1 and 5 are set.

When the operation is in progress, the program or erase controller bit of the flag status register is set to 0. In addition, the write in progress bit is set to 1. When the operation completes, the write in progress bit is cleared to 0. The write enable latch bit is cleared to 0, whether the operation is successful or not. If the operation times out, the write enable latch bit is reset and the erase error bit is set to 1.

The status register and flag status register can be polled for the operation status. When the operation completes, these register bits are cleared to 1.

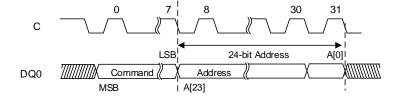
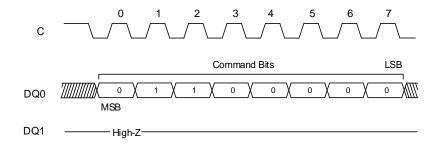

Note: For all ERASE operations, noisy or undesirable signal effects can be reduced and device data protection enhanced by holding S# LOW until the eighth bit of the last data byte has been latched in; this ensures that the number of clock pulses is a multiple of one byte before command execution

Table 8.12 ERASE Operations

Operation Name	Description/Conditions
SUBSECTOR ERASE (52h/20h) SUBSECTOR ERASE (D8h)	Sets the selected subsector or sector bits to FFh. Any address within the subsector is valid for entry. Each address bit is latched in during the rising edge of the clock. The operation can be suspended and resumed by the PROGRAM/ERASE SUSPEND and PROGRAM/ERASE RESUME commands, respectively.
CHIP ERASE (C7h/60h)	Sets the device bits to FFh. The command is not executed if any sector is locked. Instead, the write enable latch bit remains set to 1, and flag status register bits 1 and 5 are set.

Figure 8.19 SUBSECTOR and SECTOR ERASE Timing

Extended



Notes:

- 1. Requires 4-bytes of address if device is configured to 4-byte address mode.
- 2. In Octal DDR protocol, command, address, and data-input bits are transmitted on all eight DQ pins in DDR mode, and address is fixed with 4-byte mode.
- 3. S# is not shown. The operation is self-timed, and its duration is tSSE/tSE.

Figure 8.20 CHIP ERASE Timing

Extended

- 1. In Octal DDR protocol, command, address, and data-input bits are transmitted on all eight DQ pins in DDR mode.
- 2. S# is not shown. The operation is self-timed, and its duration is tBE.

8.13 SUSPEND/RESUME OPERATIONS

PROGRAM/ERASE SUSPEND Operations

A PROGRAM/ERASE SUSPEND command enables the memory controller to interrupt and suspend an array PROGRAM or ERASE operation within the program/erase latency.

To initiate the command, S# is driven LOW, and the command code is input on DQn. The operation is terminated by the PROGRAM/ERASE RESUME command.

For a PROGRAM SUSPEND, the flag status register bit 2 is set to 1. For an ERASE SUSPEND, the flag status register bit 6 is set to 1.

After an erase/program latency time, the flag status register bit 7 is also set to 1, but the device is considered in suspended state once bit 7 of the flag status register outputs 1 with at least one byte output. In the suspended state, the device is waiting for any operation.

If the time remaining to complete the operation is less than the suspend latency, the device completes the operation and clears the flag status register bits 2 or 6, as applicable. Because the suspend state is volatile, if there is a power cycle, the suspend state information is lost and the flag status register powers up as 80h.

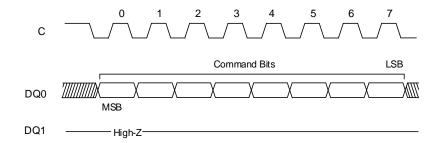
It is possible to nest a PROGRAM/ERASE SUSPEND operation inside a PROGRAM/ERASE SUSPEND operation just once. Issue an ERASE command and suspend it. Then issue a PROGRAM command and suspend it also. With the two operations suspended, the next PROGRAM/ERASE RESUME command resumes the latter operation, and a second PROGRAM/ERASE RESUME command resumes the former (or first) operation.

Table 8.13 SUSPEND Operations

Operation Name	Description/Conditions
PROGRAM SUSPEND (75h)	A READ operation is possible in any page except the one in a suspended state. Reading from a sector that is in a suspended state will output indeterminate data.
ERASE SUSPEND (75h)	A PROGRAM or READ operation is possible in any page except the one in a suspended state. Reading from a sector that is in a suspended state will output indeterminate data. During a SUSPEND SUBSECTOR ERASE operation, reading an address in the sector that contains the suspended subsector could output indeterminate data. The device ignores a PROGRAM command to a sector that is in an erase suspend state; it also sets the flag status register bit 4 to 1 (program failure/protection error) and leaves the write enable latch bit unchanged. When the ERASE resumes, it does not check the new lock status of the WRITE VOLATILE LOCK BITS command.

PROGRAM/ERASE RESUME Operations

A PROGRAM/ERASE RESUME operation terminates the PROGRAM/ERASE RESUME command. To initiate the command, S# is driven LOW, and the command code is input on DQn. The operation is terminated by driving S# HIGH.


Table 8.14 RESUME Operations

Operation Name	Description/Conditions
PROGRAM RESUME (7Ah)	The status register write in progress bit is set to 1 and the flag status register program erase controller bit is set to 0. The command is ignored if the device is not in a
ERASE RESUME (7Ah)	suspended state. When the operation is in progress, the program or erase controller bit of the flag status register is set to 0. The flag status register can be polled for the operation status. When the operation completes, that bit is cleared to 1.

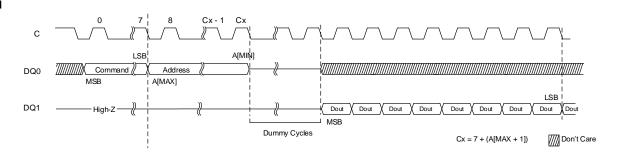
Note:

Figure 8.21 PROGRAM/ERASE SUSPEND or RESUME Timing

Extended

- 1. In Octal DDR protocol, command is transmitted on all eight DQ pins.
- 2. S# is not shown.

^{3.} See the Operations Allowed/Disallowed during Device States table.


8.14 ONE-TIME PROGRAMMABLE OPERATION

READ OPT ARRAY COMMAND

To initiate READ OTP ARRAY command, S# is driven LOW. The command code is input on DQ0, followed by address bytes and dummy clock cycles. Each address bit is latched in during the rising edge of C. Data is shifted out on DQ1, beginning from the specified address and at a maximum frequency of fC (MAX) on the falling edge of the clock. The address increments automatically to the next address after each byte of data is shifted out. There is no rollover mechanism; therefore, if read continuously, after location 0x40, the device continues to output data at location 0x40. The operation is terminated by driving S# HIGH at any time during data output.

Figure 8.22 READ OTP Command

Extended

Notes:

- 1. Requires 4-bytes of address if device is configured to 4-byte address mode.
- In Octal DDR protocol, command, address, and data-input bits are transmitted on all eight DQ pins in DDR mode, and address is fixed with 4-byte mode.
- 3. S# is not shown.

PROGRAM OPT ARRAY COMMAND

To initiate PROGRAM OTP ARRAY command, the WRITE ENABLE command must be issued to set the write enable bit to 1; otherwise, the PROGRAM OTP ARRAY command is ignored and flag status register bits are not set. S# is driven LOW and held LOW until the eighth bit of the last data byte has been latched in, after which it must be driven HIGH. The command code is input on DQ0, followed by address bytes and at least one data byte. Each address bit is latched. The command code is input on DQ0, followed by address bytes and at least one data byte. Each address bit is latched in during the rising edge of the clock. When S# is driven HIGH, the operation, which is self-timed, is initiated; its duration is tPOTP. There is no rollover mechanism; therefore, after a maximum of 65 bytes are latched in the subsequent bytes are discarded.

PROGRAM OTP ARRAY programs, at most, 64 bytes to the OTP memory area and one OTP control byte. When the operation is in progress, the write in progress bit is set to 1. The write enable latch bit is cleared to 0, whether the operation is successful or not, and the status register and flag status register can be polled for the operation status. When the operation completes, the write in progress bit is cleared to 0.

If the operation times out, the write enable latch bit is reset and program fail bit is set to 1. If S# is not driven HIGH, the command is not executed, flag status register error bits are not set, and the write enable latch remains set to 1. The operation is considered complete once bit 7 of the flag status register outputs 1 with at least one byte output.

The OTP control byte (byte 64) is used to permanently lock the OTP memory array.

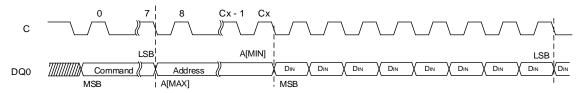

8.15 ONE-TIME PROGRAMMABLE OPERATION

Table 8.15 OTP Control Byte (Byte 64)

Bit	Name	Settings	Description
0	OTP control byte	0 = Locked 1 = Unlocked (Default)	Used to permanently lock the 64-byte OTP array. When bit 0 = 1, the 64-byte OTP array can be programmed. When bit 0 = 0, the 64-byte OTP array is read only. Once bit 0 has been programmed to 0, it can no longer be changed to 1. Program OTP array is ignored, the write enable latch bit remains set, and flag status register bit 1 and 4 are set.

Figure 8.23 PROGRAM OTP Command

Extended

Cx = 7 + (A[MAX + 1])

- Requires 4-bytes of address if device is configured to 4-byte address mode.
 In Octal DDR protocol, command, address, and data-input bits are transmitted on all eight DQ pins in DDR mode, and address is fixed with 4-byte mode.
- 3. S# is not shown.

8.16 ADDRESS MODE OPERATION

To initiate these commands, S# is driven LOW, and the command is input on DQn.

Table 8.16 ENTER or EXIT 4-BYTE ADDRESS MODE Operations

Operation Name	Description/Conditions
ENTER 4-BYTE ADDRESS MODE (B7h)	The effect of the command is immediate. The default address mode is three bytes, and the device returns to default upon exiting the 4-byte address
EXIT 4-BYTE ADDRESS MODE (E9h)	mode.

Note:

1. 3-byte address mode (Default) or 4-byte address mode in Extended protocol. In Octal DDR protocol, always fixed 4-byte address mode is supported.

8.17 STATE TABLE

The device can be only one state at a time except for read while program/erase operation. Depending on the state of the device, some operations shown in the table below are allowed (Yes) and others are not (No). For example, when the device is in standby state, all operations except SUSPEND are allowed in any sector. In the erase suspend state, a PROGRAM operation is allowed in any sector except the one in which an ERASE operation has been suspended.

Table 8.17 Operations Allowed/Disallowed During Device States

Operation	Standby State	Program or Erase State	Subsector Erase Suspend or Program Suspend State	Erase Suspend State	Notes	
READ Flash Array	Yes	Yes ⁽⁸⁾ /No	Yes	Yes	1	
READ (status/flag status/volatile configuration registers)	Yes	Yes	Yes	Yes	6	
PROGRAM	Yes	No	No	Yes/No	2	
ERASE (sector/subsector)	Yes	No	No	No	3	
WRITE	/RITE Yes		No	No	4	
WRITE	Yes	No	Yes	Yes	5	
SUSPEND	No	Yes	No	No	7	

- When issued to a sector or subsector that is simultaneously in an erase suspend state, the READ operation is accepted, but the data output is not guaranteed until erase has completed.
- 2. All PROGRAM operations except PROGRAM OTP Array (42h). In the erase suspend state, a PROGRAM operation is allowed in any sector (Yes) except the sector (No) in which ERASE operation has been suspended.
- 3. Applies to the SECTOR ERASE or SUBSECTOR ERASE operation.
- Applies to the following operations: WRITE STATUS REGISTER, WRITE NONVOLATILE CONFIGURATION REGISTER, PROGRAM OTP Array, WRITE PROTECTION MANAGEMENT REGISTER, WRITE PASSWORD, PROGRAM SECTOR PPROTECTION and CHIP ERASE.
- 5. Applies to the following operations: WRITE VOLATILE CONFIGURATION REGISTER, WRITE ENABLE, WRITE DISABLE, CLEAR FLAG STATUS REGISTER operation.
- 6. Applies to READ STATUS REGISTER, READ FLAG STATUS REGISTER or READ volatile configuration REGISTER operation.
- 7. Applies to PROGRAM SUSPEND or ERASE SUSPEND operation.
- 8. READ Flash Array operation is allowed in any bank (Yes) except the bank (No) in which PROGRAM/ERASE operation has been in progress (Read while Program/Erase Operation).

8.18 XIP MODE

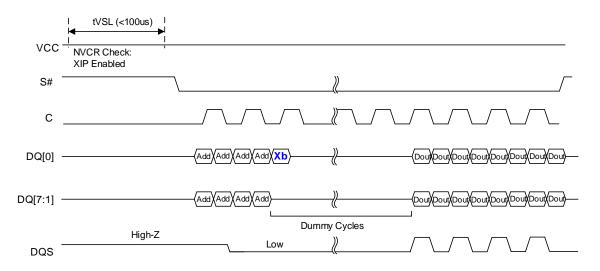
Execute-in-place (XIP) mode allows the memory to be read by sending an address to the device and then receiving the data on one or eight pins in parallel, depending on the customer requirements. XIP mode offers maximum flexibility to the application, saves instruction overhead, and reduces random access time.

ACTIVATE or TERMINATE XIP Using Volatile Configuration Register

Applications that boot in SPI and must switch to XIP use volatile configuration register. XIP provides faster memory READ operations by requiring only an address to execute, rather than a command code and an address.

To activate XIP requires two steps;

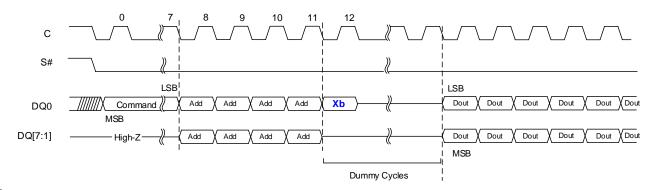
- First, enable XIP by setting volatile configuration register (byte 6).
- Next, drive the XIP confirmation bit to 0 during next FAST READ operation. XIP is then active.


Once in XIP, any Fast Read Operation that occurs after S# is toggled requires only address bits to execute; a Fast Read command code is not necessary, and device operations use the SPI protocol. XIP is terminated by driving XIP confirmation bit to 1. Then the device automatically resets the XIP volatile configuration register to FFh.

ACTIVATE or TERMINATE XIP Using Nonvolatile Configuration Register

Applications that must boot directly in XIP use nonvolatile configuration register. To enable a device to power-up in XIP using register, set nonvolatile configuration register (byte 6). Settings vary according to protocol, as explained in the Nonvolatile Configuration Register Section. Because the device boots directly in XIP, after the power cycle, no command code is necessary. XIP is terminated by driving XIP confirmation bit to 1.

Figure 8.24 XIP Mode Entered at Power-On


Octal DDR

- Xb is the XIP confirmation bit and should be set as follows: 0 to keep XIP state; 1 to exit XIP mode and return to standard read mode.
- 2. Example of NVCR. 06h = FEh (8IOFR XIP) in Octal DDR protocol

Figure 8.25 XIP Mode Entry by Volatile Configuration Register

Extended

Notes:

- 1. Xb is the XIP confirmation bit and should be set as follows: 0 to keep XIP state; 1 to exit XIP mode and return to standard read mode.
- 2. Example of NVCR. 06h = FEh (8IOFR XIP) in Extended SPI protocol

Confirmation Bit Settings Required to Activate or Terminate XIP

The XIP confirmation bit setting activates or terminates XIP after it has been enabled or disabled. This bit is the value on DQ0 during the first dummy clock cycle in the FAST READ operation. In Octal I/O XIP mode, the values of DQ 7:1] during first dummy clock cycle after the address are always "Don't Care".

Table 8.18 XIP Confirmation Bit

Bit Value	Description
0	Activates XIP: While this bit is 0, XIP remains activated.
1	Terminates XIP: While this bit is 1, XIP remains terminated and the device returns to SPI.

Table 8.19 Effects of Running XIP in different Protocols

XIP Configuration (NVCR. 06h)	Description
Fast Read (F8h), 80FR (FDh) in Extended SPI protocol	A LOW pulse on RESET# pin resets XIP and the device to the state it was in previous to the last power-up, as defined by the non-volatile configuration
8IOFR (FEh) in Extended SPI protocol	register.
Fast Read (F8h), 80FR (FDh), 8I0FR (FEh) in Octal DDR protocol	Values of DQ [7:1] during first dummy clock cycles are "Don't Care".

Terminating XIP after a Controller and Memory Reset

The system controller and the device can become out of synchronization if, during the life of the application, the system controller is reset without the device being reset. In such a case, the controller can reset the memory to power-on reset if the memory has reset functionality.

The following sequence causes the controller to set the XIP configuration bit to 1, thereby terminating XIP. However, it does not reset the device or interrupt PROGRAM/ERASE operations that may be in progress. After terminating XIP, the controller must execute RESET ENABLE and RESET MEMORY to implement a software reset and reset the device. It's required to have DQ0 equal to 1 for the situations listed here:

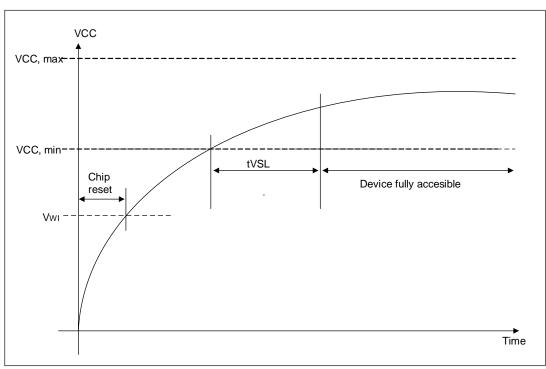
- 3 clock cycles within S# LOW (S# becomes (S# becomes HIGH before 4th clock cycle) +
- 4 clock cycles within S# LOW (S# becomes (S# becomes HIGH before 5th clock cycle) +
- 5 clock cycles within S# LOW (S# becomes (S# becomes HIGH before 6th clock cycle) +
- 25 clock cycles within S# LOW (S# becomes (S# becomes HIGH before 26th clock cycle) +
- 33 clock cycles within S# LOW (S# becomes (S# becomes HIGH before 34th clock cycle) +

8.19 POWER-UP AND POWER-DOWN

Power-Up and Power-Down Requirements

At power-up and power-down, the device must not be selected; that is, S# must follow the voltage applied on Vcc reaches the correct values; Vcc, min at power-up and Vsc at power-down.

To provide device protection and prevent data corruption and inadvertent WRITE operations during power-up, a power-on reset circuit is included. The logic inside the device is held to RESET while V_{CC} is less than the power-on reset threshold voltage shown here; all operations are disabled, and the device does not respond to any instruction. During a standard power-up phase, the device ignores all commands except READ STATUS REGISTER and READ FLAG STATUS REGISTER. These operations can be used to check the memory internal state. After power-up, the device is in standby power mode; the write enable latch bit is reset; the write in progress bits is reset; and the dynamic protection register is configured as (write lock bit, lock down bit) = (0, 0).


Normal precautions must be taken for supply line decoupling to stabilize the V_{CC} supply. Each device in a system should have the V_{CC} line decoupled by a suitful capacitor (typically 100nF) close to package pins. At power-down, when V_{CC} drops from the operating voltage to below the power-on-reset threshold voltage shown here, all operations are disabled and the device does not respond to any command.

When the operation is in progress, the program or erase controller bit of the status register is set to 0. To obtain the operation status, the flag status register must be polled. When the operation completes, the program or erase controller bit is cleared to 1. The cycle is complete after the flag status register outputs the program or erase controller bit to 1.

Note: If power-down occurs while a WRITE, PROGRAM, or ERASE cycle is in progress, data corruption may occur.

 V_{PPH} must be applied only when V_{CC} is stable and in the $V_{\text{CC},\text{min}}$ to V_{CC} , max voltage range.

Figure 8.26 Power-Up Timing

Notes:

1. During tVSL period, output strength is default setting and DQS is disabled.

Table 8.20 Power-Up Timing and Vwi Threshold

Symbol	Parameter		Min	Max	Unit	Notes
tVSL	VCC, min to de	vice accessible	300	-	us	1, 2
VWI	Write Inhibit	IS25LX	-	2.5	V	1
	Voltage	IS25WX	-	1.5	V	1

- 1. Parameters listed are characterized only.
- 2. On the first power-up after an event causing a sub-sector ERASE operation interrupt (for example, due to power-loss), the maximum time for tVSL will be up to 4.5ms in case of 4KB subsector erase interrupt and up to 36ms in case of 32KB subsector erase interrupt, this accounts for erase recovery embedded operation.

8.20 DATA LEARNING PATTERN READ OPERATION FOR TRAINING (DLPRD)

The Data Learning Pattern is preamble bits, and it can help host controller to determine the phase shift from clock to data edges so that controller can capture data at the center of the data eye at high frequency operation.

DLPRD function is supported in both Extended SPI mode and Octal DDR mode.

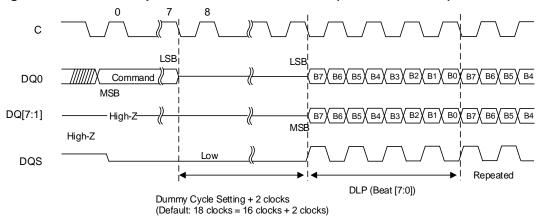
- DLPRD (CDh) in Extended SPI mode: 1S-0-8D operation, 8-bit SDR command is transferred through DQ0 only, and DDR data is transferred through DQ0 to DQ7
- DLPRD (CDh+CDh) in Octal DDR mode: 8D-0-8D, 16-bit DDR command and DDR data are transferred through DQ0 to DQ7.
- DQS must be always ON during DLPRD operation.

Note: To place DQS and DQ on the same position with DDR Octal I/O Read or Octal DDR read operation with 32-bit address, dummy cycle of DLPRD = Dummy cycle setting of each operation + 2 clock cycle (Default: 16 cycles + 2 cycles = 18 cycles).

The sequence of issuing DLPRD instruction is: CE# goes low \rightarrow sending DLPRD instruction \rightarrow dummy cycles \rightarrow DLP data out repeatedly until CE# goes high.

Note: DLP data is repeated after beat 7 if CE# remains LOW until CE# goes HIGH. Beat $7 \rightarrow$ beat $6 \rightarrow$...beat $0 \rightarrow$ beat $7 \rightarrow$ beat $6 \rightarrow$

DLP pattern is an 8-bit data pattern in Configuration Register (bits [7:0], address; 0Ah), and default values are 01010101.


Predefined pattern can be changed with Configuration Register Write Operation.

Also SSO pattern can be selected when SSOENB bit of Configuration Register (bit [6], address; 0Bh) sets to "1" like below.

Table 8.21 Data Learning Pattern

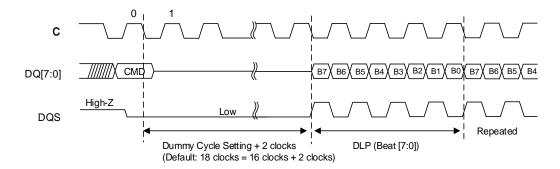

SSOSEL (bit 6, 0Bh)	IO Pattern	DQ0~DQ2, DQ4~DQ7	DQ3
Bit 6 = 1 (default; SSO disabled)	All 8 DQs are same	0101 0101	0101 0101
Bit 6 = 0 (SSO enabled)	DQ3 is inverted (7 DQs are same)	0101 0101	1010 1010

Figure 8.27 DLPRD Sequence in Extended SPI mode (NVCR. 00h = FFh)

Figure 8.28 DLP READ Sequence in Octal DDR mode.

8.21 ECC OPERATION

ECC (Error Checking and Correcting) is to prevent stored data errors.

The device implemented On-Chip ECC, which can correct 1-bit error and detect 2-bit error per 16-byte chunk. (SEC-DED: Single Error Correction and Double Error Detection)

When ECC is ON, it is recommended that data be programmed in multiple of 16 bytes in predefined 16-byte chunk address using Page Program command instead of single byte or single word programming.

However, partial programming of 16-byte chuck is allowed under the restriction that user cannot program or alter the content of partially programmed chunk without erasing a sector, which includes partially programmed chunk.

Double programming (rewriting without erase), or rewrite partially programmed chunk (alternating of single bit, byte, or word without erasing within 16-byte ECC chunk) is an illegal operation, and automatically aborted. Also bit 7 of address 0Bh of volatile configuration register will be set to 1.

ECC registers show detailed information for error correction activity on the device. The ECC status registers are placed on the Volatile Configuration Register, which include 3-bit ECC status (bit [2:0] in address 0Ch) to identify the error type, 4-bit ECC counter (bit [6:3] and first event chunk address (address 14h~address 17h). First ECC event for chunk address will be selected by setting of EERRBECC bit of 0Bh.

The Volatile ECC registers values can be reset through either of the following situations:

- CLRERR command (B6h)
- Issuing Software RESET command
- Hardware RESET
- JEDEC Standard In-Band RESET
- Power-up cycle

Table 8.22 16-byte ECC Chunks within a Page (256 byte)

Chunk#	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16 Bytes	B0	B16	B32	B48	B64	B80	B96	B128	B144	B160	B144	B176	B192	B208	B224	B240
	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~	~
	B15	B31	B47	B63	B79	B95	B127	B143	B159	B175	B159	B191	B207	B223	B239	B255

8.22 PROGRAM ADDRESS PARITY CHECK AND PROGRAM ARRAY DATA CRC CHECK OPERATION

PROGRAM ADDRESS PARITY

The program address parity check function and program array data CRC check (1-bit CRC) function are supported at Octal DDR protocol only.

The CRCENB bit (bit 3 in Configuration Register [address 0Bh]) can enable both program address parity check function and program data CRC check. Both are **ODD** parity check.

For a program address parity check operation, the host must input parity check bits (8-bits) on the rising edge of clock after the 4-byte address cycles in Octal DDR mode.

If Parity error is detected, the command will be aborted, PARSTAT bit (bit [1] of 0Ch in volatile configuration register) will be set to "1".

CLRERR command (B6h) will clear PARSTAT bit to "0".

The program address parity bits are calculated by bitwise exclusive-OR of corresponding input pin. (bit 0 is calculated by addresses on the DQ0 pin; A0, A8, A16, and A24 out of 32 addresses)

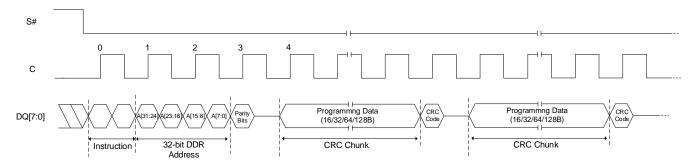
PROGRAM ARRAY DATA CRC

The program array data CRC check function is a data parity check function in a program operation.

The program data size must be multiple of CRC chunk size, set by CRCSIZE bits (bits [5:4] of address 0Bh in configuration register), and 8-bit CRC code (data parity bits) should be following program data on the rising edge of clock.

Also, starting address has to be at CRC chunk boundary.

Otherwise, program array data CRC check might result in an error, and program operation would be aborted. The CRC chunk unit is default to set as 16 bytes.


If CRC chunk size is set to 16-byte, and total program data size is 32-byte, then host will input 8-bit CRC code on the rising clock edge after 16-byte of programming data. Remaining 16-byte of program data will be input on the next rising edge of clock, and 8-bit CRC code will be followed after the end of program data.

If CRC error is detected, the program command will be aborted, CRCSTAT bit (bit [0] of 0Ch in volatile configuration register) will be set to "1".

CLRERR command (B6h) will clear CRCSTAT bit to "0".

8-bit CRC code is also calculated by bitwise exclusive-OR of corresponding input pin in the CRC chunk. For example, CRC code bit 0 is calculated by all the bits of DQ0 pin in the CRC chunk.

Figure 8.29 PROGRAM Address Parity and Programming Array Data CRC Timing (S#, C, DQ [7:0])

8.23 ERR# SIGNAL OPERATION

The ERR# pin is a real time indication signal for the ECC event.

The ERR# pin is designed as an open drain structure.

In normal situation, the ERR# is kept on Hi-Z state. Once ECC event occurs, the ERR# pin will pull LOW and stays LOW until RESET the device or until CLRERR command (B6h) is issued.

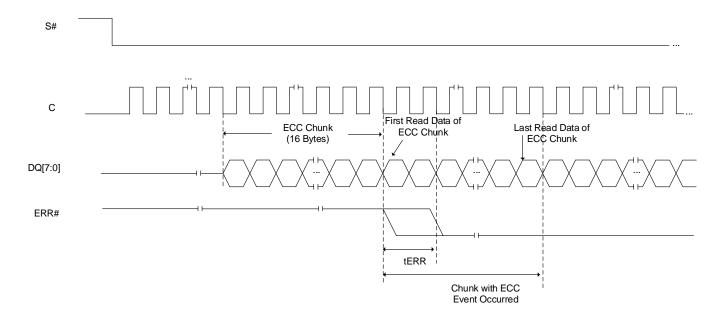
When ERR# signal goes LOW after detecting ECC error, especially when 2-bit detection error occurred, ERR# signal must be LOW before the end of ECC chunk read data for host to block wrong read data from the device.

So valid ERR# LOW signal must be within ECC chunk read data (tERR). tERR is from beginning of ECC chunk read data to ERR# LOW, and is maximum 2 clock cycles.

Symbol	Parameter	Min	Тур	Max	Units
tERR	ERR# Access time from beginning of ECC chunk	•		2	Clock

The user can select ERR# corresponding ECC event type; 1-bit correction or 2-bit detection by setting ERRBECC bit (bit 2 of address 0Bh in configuration register).

ERRBECC bit also selects ECC event type for storage of ECC occurred address location.


If it is set to "1",

- ERR# signal reacts only to the 2-bit detection only.
- The address for first 2-bit detection occurred location will be stored on the volatile configuration register (address 10h~0Dh).

To confirm error type (2-bit detection) after ERR# signal goes LOW, host could check ECCSTAT bits (bit [2] of address 0Ch in configuration register).

The ERR# signal goes to high-z state by CLRERR command (B6h), which also clears all volatile register values related Parity error, CRC error and ECC error.

Figure 8.30 ERR# Signal Timing when detecting ECC error

8.24 CLEAR ERRB OPERATION

The CLERRB operation (B6h) disables ERR# signal, which has been LOW to indicate ECC error.

Also it resets ECCSTAT bit, PARSTAT bit, CRCSTAT bit, ECCCOUNTER bits, IPA_ECCB bit, and ECCFCA bits to default state.

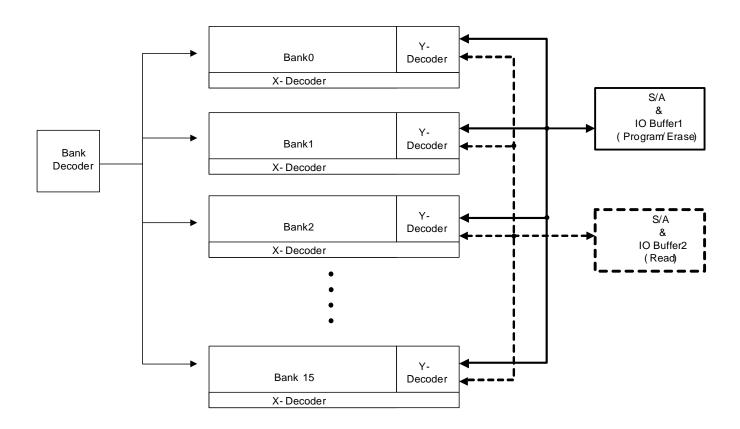
Also power-on cycle or Hardware RESET/Software RESET operation will disables ERR# signal, and clears volatile register bits.

8.25 READ WHILE PROGRAM/ERASE OPERATION

The read while program/erase feature allows the host system to read data from any other 7 banks while program or erase operation is in progress at one bank of memory array

The Read while program/erase feature can be used to perform the following:

- Read another bank out of remaining 15 banks of memory array while Erase is in progress in one bank.
- Read another bank out of remaining 15 banks of memory array while Program in progress in one bank.
- At any time, only one bank is available for program/erase operation.


To check which bank is in the middle of program/erase operation, host can check it by reading BANKSTAT bits [bit [4:0] of address 11h]

The device can improve overall system performance by allowing a host system to program or erase in one bank, then immediately read array data from remaining bank, with zero latency.

This releases the system from waiting for the completion of program or erase operations or suspend operation.

NOTE: RWW function is supported by optional device (option L) only.

Figure 8.31 Block Diagram while Program/Erase Operation

8.26 PHASE SHIFTED CLOCK FOR CENTER ALIGNED DQS IN OCTAL DDR OPERATION

The device offers an optional feature of PCS (Phase Shifted Clock), which makes no timing relationship between data strobe (DQS) and read data. The feature is provided in certain devices, based on the Ordering Part Number.

When PSC (Phase Shifted Clock) clock is provided, PSC clock will be used as a reference for DQS signal to put DQS signal on the center of read data valid window.

- C is the reference for Read data Q
- PSC is the reference for Data Strobe DQS.
- PSC is supported only with BGA package.

Normally PSC clock is a copy of C clock that is phase shifted 90 degrees. However, other degrees of phase shift between C and PSC may be used by host to optimize DQS position.

PSC is not used for write operation. Also DQS must be enabled for PSC mode.

Below parameters are defined only for PSC mode.

Table 8.23 Timing Parameters in PSC MODE

Symbol	Parameter		Min	Тур	Max	Units
_	Clock Frequency for Fast	IS25LX (3.0V)			133	MHz
F _C T	Read in Octal DDR mode	IS25WX (1.8V)			166	IVIITZ
	@ CL = 10pF			6		
t _{DQS}	DQS Valid from PSC clock	@ CL = 15pF			6.5	ns
		@ CL = 30pF			7	
tskew	tskew Skew between tV and tDQSQ	133MHz (DDR)	-0.5		0.5	ns
Skew between tv and tbQ	Skew between tv and tDQSQ	166MHz (DDR)	-0.4		0.4	ns

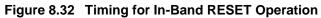
Note:

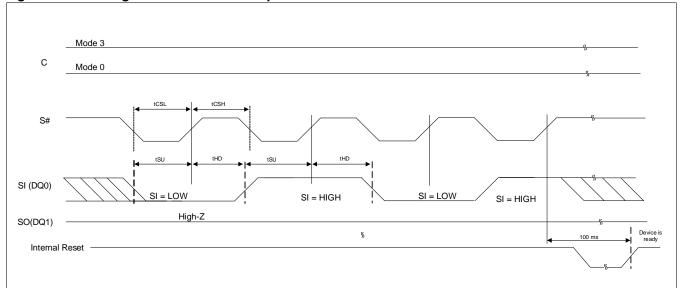
1. Optional 128KB block instead of 64KB block is also supported with part number option.

8.27 IN-BAND RESET

The device offers an additional feature of In-Band RESET function, which uses existing SPI signals to initiate a hardware reset, which is different from existing software reset/hardware reset (dedicated RESET# pin);

- Existing software reset commands often depend on the Flash being in a particular mode before they are effective. This
 makes software based reset sequences depend on slave device and mode.
- Dedicated RESET# pin requires additional pin over traditional 8-pins of SPI Flash device. Also it requires 1 more signal for reset operation.


In Band-RESET operation requires 2-signal pins; S# and DQ0.


- S# is driven active low to select the SPI slave (note1)
- Clock (C) remains stable in either a high or low state(note 2)
- SI (DQ0) is driven low by the bus master, simultaneously with S# going active low.....(note 3)
- S# is driven inactive ... (note 4)
- Repeat the above 4 steps, each time alternating the state of SI (DQ0).
- After the fourth S# pulse, the slave triggers its internal reset......(note 5)
- Note 1 This powers up the SPI slave
- Note 2 This prevents any confusion with a command, as no command bits are transferred (clocked)
- Note 3 No SPI bus slave drives SI (DQ0) during S# low before a transition of clock (C). Slave streaming output active is not allowed until after the first edge of clock (C).
- Note 4 The slave captures the state of SI on the rising edge of S#
- Note 5 SI (DQ0) is low on the first S#, high on the second, low on the third,

high on the fourth ... (This provides a 5h, unlike random noise)

NOTE:

This reset sequence is not intended to be used at normal power on, but to be used only when the device is not responding to the system. This reset sequence will be operational from any state that the device may be in. During the reset process, the device will ignore any chip select {command}. Once the sequence is completed the device will respond to normal operation e.g: provide a SFDP response.

Table 8.24 AC Timings for In Band RESET

Parameter	Min	Max	Units
tCSL	500		ns
tCSH	500		ns
Setup Time	5		ns
Hold Time	5		ns

9. ELECTRICAL CHARACTERISTICS

9.1 ABSOLUTE MAXIMUM RATINGS (1)

Symbol	Parameter		Min	Max	Units	Notes
T _{STG}	Vcc to Ground		-65	150	°C	
W	V _{CC} Supply Voltage	IS25LX	-0.6	4	V	2
Vcc		IS25WX	-0.6	2.5		
V _{PP}	Fast Program Voltage	Fast Program Voltage		10	V	
Vio	I/O voltage with respect to ground		-0.6	Vcc + 0.6	V	2
Vesd	Electrostatic Discharge Voltage (human body model)		-2000	2000	V	2, 3

Note:

- 1. Applied conditions greater than those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. All specified voltages are with respect to VSS. During infrequent, nonperiodic transitions, the voltage potential between V_{SS} and V_{CC} may undershoot to -2.0V for periods less than 20ns, or overshoot to VCC,max + 2.0V for periods less than 20ns.
- 3. JEDEC Standard JESD22-A114A (C1 = 100pF, R1 = 1500 ohm, R2 = 500 ohm)

9.1 OPERATING CONDITIONS

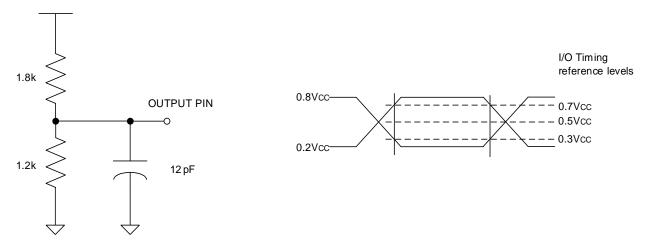
Symbol	Parameter		Min	Max	Units
Vcc	Cupply Voltage	IS25LX	2.7	3.6	V
	Supply Voltage	IS25WX	1.7	2.0	_ v
V _{PPH}	Supply Voltage on VPP		8.5	9.5	V
TA	Ambient Operating	Extended	-40	105	°C
Temperature		Automotive A3	-40	125	°C

9.2 PIN CAPACITANCE (1)

(TA = 25°C, VBIAS=VCC/2, 54MHz)

Symbol	Description	Min	Max	Units
C _{IN/OUT}	DQ [7:0], DQS, ERR#, RESET#	-	40	pF
CIN	Other Input Pin Capacitance: C, W#	-	24	pF
C _{IN/S#}	Chip Select (S#)	-	32	pF

Note: 1. These parameters are not 100% tested and not subject to a production test. They are verified by design and characterization. The capacitance is measured according to JEP147, "PROCEDURE FOR MEASURING INPUT CAPACITANCE USING A VECTOR NETWORK ANALYZER" with VCC and VSS applied and all other pins floating (except the pin under test).



9.3 AC TIMING I/O CONDITIONS

Symbol	Parameter	Parameter		Max	Units
CL ⁽¹⁾	Load Capacitance		-	12	pF
TD TE	Innut Dies and Fall Times	IS25LX		1.5	
TR,TF	Input Rise and Fall Times	IS25WX		1.2	ns
V _T	Clock Reference Voltage		0.5V _{CC}		V
VIN	Input Pulse Voltages		0.2Vcc to 0.8Vcc		V
VREFI	Input Timing Reference Voltages		0.3Vcc to 0.7Vcc		V
VREFO	Output Timing Reference Voltag	es	0.5	V	

Note: 1. Output Buffers are configurable by user, and default value is 50ohm.

Figure 9.1 Output test load & AC measurement I/O Waveform

9.4 DC CURRENT CHARACTERISTICS AND OPERATING CONDITIONS

Table 9.1 DC Current Characteristics and Operating Conditions

Parameter	Symbol	Test Conditions			Тур	Max	Units	Notes
Input Leakage Current	Iы	$V_{IN} = 0V \text{ to } V_{CC}$				±8	μA	
Output Leakage Current	ILO	$V_{IN} = 0V$ to V_{CC}				±8	μA	
			IS25LX	105°C	40	360	μA	2
Standby Current	Icc ₁	$S# = V_{CC}, V_{IN} = V_{CC}$ or	IOZULA	125°C	40	560	μΑ	2
Standby Current	ICC1	V_{SS}	IS25WX	105°C	24	360	μA	
			132300	125°C	24	560	μA	
			IS25LX	105°C	60	120	μΑ	3
Deep power down current	Icc2	$S\# = V_{CC}, V_{IN} = V_{CC} \text{ or } V_{SS}$	IOZOLA	125°C	00	200	μΑ	3
beep power down current	1002		IS25WX	105°C	8	120	μA	
				125°C	0	200	μΑ	
Operating Current		C = 0.1VCC/0.9VCC at 54MHz, DQ1 = Open			-	8	mA	4
(FAST READ EXTENDED I/O)	_	C = 0.1VCC/0.9VCC at	133MHz, DQ1 = Open		-	16	mA	4
Operating Current (Octal SDR command)	I _{CC3}	C = 0.1VCC/0.9VCC at	at 166MHz, DQ = Open		-	60	mA	
Operating Current (Octal DDR command)		C = 0.1VCC/0.9VCC at	C = 0.1VCC/0.9VCC at 200MHz, DQ = Open		-	70	mA	
Operating Current (PROGRAM Operations)	I _{CC4}	S# = V _{CC}			-	40	mA	5
Operating Current (WRITE Operations)	Icc5	S# = V _{CC}			-	24	mA	
Operating Current (ERASE Operations)	Icc6	S# =	Vcc		-	35	mA	

Notes:

- 1. Current are RMS unless noted. Typical values are at VCC (1.8V); VI/O = 0V/V_{CC}; TA=25°C
- 2. Standby current is an average calculated 5 us after S# de-assertion and completion of any internal operation.
- 3. Deep power-down current is an average calculated during a 5ms time interval 100us after completion of any internal operation.
- 4. Read current is an average calculated during a 1KB continuous READ operation without load, in a checker-board pattern.
- 5. Program current is an average measured over a 256-byte data PROGRAM operation.

Table 9.2 DC Current Characteristics and Operating Conditions

Parameter	Symbol	ymbol Conditions		Max	Units
Input Low voltage (DC)	V.,	-	-0.3	0.3V _{CC}	V
Input Low voltage (AC)	VIL	-	-0.3	0.2V _{CC}	V
Input High voltage (DC)	\/	-	0.7V _{CC}	V _{CC} + 0.3	V
Input High voltage (AC)	V _{IH}	-	0.8V _{CC}	V _{CC} + 0.3	V
Output Low voltage	V _{OL}	I _{OL} = 1.6mA	-	0.15 x V _{CC}	V
Output High voltage	Vон	I _{OH} = -100uA	0.85 x V _{CC}	-	V

Note:

1. V_{IL} can undershoot to -1.0V for periods less than 2ns; V_{IH} can overshoot to $V_{CC,max}$ + 1.0V for periods less than 2ns.

9.5 AC CHARACTERISTICS

Table 9.3 AC Characteristics and Operating Conditions for IS25LX (VCC = 1.7V to 1.95V)

Parameter	Symbol	Data Transfer Rate	Min	Тур	Max	Unit	Notes
Clock frequency for all commands	40	SDR	DC	-	166	N41.1-	9
other than READ (03h)	fC	DDR	DC	-	200	MHz	9
Clock frequency for READ (03h)	tR	SDR	DC	-	54	MHz	
01 1 1110114	4011	SDR	2.7	-	3.3		_
Clock HIGH time	tCH	DDR	2.25	-	2.75	ns	2
01.11.0003	+01	SDR	2.7	-	3.3		2
Clock LOW time	tCL	DDR	2.25	-	2.75	ns	2
Clock rise time (peak-to-peak)	tCLCH	SDR/DDR	1/1.2	-	-	V/ns	3, 4
Clock fall time (peak-to-peak)	tCHCL	SDR/DDR	1/1.2	-	-	V/ns	3, 4
S# active setup time (relative to clock)	tSLCH	SDR/DDR	2.25	-	-	ns	
S# Not active hold time (relative to clock)	tCHSL	SDR/DDR	2	-	-	ns	
Data in setup time	tDVCH	SDR/DDR	1.8/0.4	-	-	ns	
	tDVCL	DDR only	0.4	-	-	ns	
	tCHDX	SDR/DDR	1.8/0.4	-	-	ns	
Data in hold time	tCLDX	DDR only	0.4	-	-	ns	
S# active hold time (relative to clock)	tCHSH	SDR/DDR	2	-	-	ns	
S# Not active setup time (relative to clock)	tSHCH	SDR/DDR	2	-	-	ns	
S# deselect time after a READ command	tSHSL1	SDR/DDR	10	-	-	ns	
S# deselect time after a nonREAD command	tSHSL2	SDR/DDR	30	-	-	ns	
Output disable time	SHQZ	SDR/DDR	-	-	6	ns	3
Data Valid Window	tDVW	DDR	1.3	-	-	ns	
Clock Low to output valid (Cload=12pF)	tCLQV	SDR/DDR	-	-	6	ns	5
Clock High to output valid (Cload=12pF)	tCHQV	DDR	-	-	6	ns	5
Output hold skew	tQHS	DDR	-	-	0.5	ns	
DQS to DQ skew	tDQSQ	SDR/DDR	-	-	0.4	ns	
DQS low after first clock	tCLQSL	SDR/DDR	-	-	10	ns	6
S# to DQS High-Z	tSHQSZ	SDR/DDR	-	-	6	ns	
		SDR/DDR	1.3	-	-	ns	5
Output hold time	tCLQX	DDR only	1.3	-	-	ns	5

AC Characteristics and Operating Conditions (Continued)

Parameter	·	Symbol	Data Transfer Rate	Min	Тур	Max	Unit	Notes
Write protect setup time		tWHSL	SDR/DDR	20	-	-	ns	7
Enhanced V _{PPH} HIGH to S# I	_OW	tVPPHSL	SDR/DDR	200	-	-	ns	7
S# HIGH to deep power-dow	'n	tDP	SDR/DDR	3	-	-	us	
S# HIGH to standby mode (I time)	OPD exit	tRDP	SDR/DDR	30	-	-	us	
WRITE STATUS REGISTER time	R cycle	tW	SDR/DDR	-	1.3	8	ms	
WRITE NONVOLATILE CONFIGURATION REGISTS time	ER cycle	tWNVCR	SDR/DDR	-	0.2	1	S	
WRITE PROTECTION MANAGEMENT REGISTER	timing	tPPMR	SDR/DDR	-	0.1	0.5	ms	
Nonvolatile sector lock time		tPPBP	SDR/DDR	-	0.1	2.8	ms	
Program ASP Register		tASSP	SDR/DDR	-	0.1	0.5	ms	
Program password		tPASSP	SDR/DDR	-	0.2	0.8	ms	
Erase nonvolatile sector lock	array	tPPBE	SDR/DDR	-	0.2	1	S	
Page program time (256 byte	es)	tPP	SDR/DDR	-	120	1800	us	8
Page program time when Vp (256 bytes)	p = VPPH	tPP	SDR/DDR	-	80	1800	us	8
Program OTP cycle time (64	1 bytes)	tOTP	SDR/DDR	-	0.2	0.8	ms	
	128KB	105	000/000	-	0.2	1	_	
Sector Erase time	64KB(1)	tSE	SDR/DDR	-	0.15	1	S	
Subsector Erase time (4KB)		tSE4K	SDR/DDR	-	20	400	ms	
Subsector Erase time (32KB)	tSE32K	SDR/DDR	-	0.1	1	s	
Chip Erase time		tBE	SDR/DDR	-	140	360	s	

- 1. Typical values given for TA=25°C
- 2. tCH + tCL must add up to 1/fC.
- 3. Value guaranteed by characterization; not 100% tested.
- 4. Expressed as a slew-rate
- 5. The specification only applies when DQS is disabled.
- 6. DQS will be driven with the first clock falling edge after S# LOW.
- 7. Only applicable as a constraint for a WRITE STATUS REGISTER command when STATUS REGISTER WRITE is set to 1.
- 8. Typical value is applied for pattern: 50% "0" and 50% "1"
- 9. Maximum frequency of A5h (SFDP Read) operation is 100MHz.

Table 9.4 AC Characteristics and Operating Conditions for IS25LX (VCC = 2.7V to 3.6V)

Parameter	Symbol	Data Transfer Rate	Min	Тур	Max	Unit	Notes
Clock frequency for all commands	"	SDR	DC	-	133	NALL-	
other than READ (03h)	fC	DDR	DC	-	133	- MHz	
Clock frequency for READ (03h)	tR	SDR	DC	-	54	MHz	
Clast HICH times	tCH	SDR	3.375	-	4.125	no	2
Clock HIGH time	ЮП	DDR	3.375	-	4.125	ns	2
Cleated OW time	tCL	SDR	3.375	-	4.125	no	2
Clock LOW time	ICL	DDR	3.375	-	4.125	ns	2
Clock rise time (peak-to-peak)	tCLCH	SDR/DDR	1.3/1.1	-	-	V/ns	3, 4
Clock fall time (peak-to-peak)	tCHCL	SDR/DDR	1.3/1.1	-	-	V/ns	3, 4
S# active setup time (relative to clock)	tSLCH	SDR/DDR	3.375	-	-	ns	
S# Not active hold time (relative to clock)	tCHSL	SDR/DDR	2	-	-	ns	
	tDVCH	SDR/DDR	1.8/0.7	-	-	ns	
Data in setup time	tDVCL	DDR only	0.7	-	-	ns	
5	tCHDX	SDR/DDR	1.8/0.7	-	-	ns	
Data in hold time	tCLDX	DDR only	0.8	-	-	ns	
0, , , , , , , , , , , , , , , , , , ,	1011011	SDR	2	-	-	ns	
S# active hold time (relative to clock)	tCHSH	DDR	2			ns	
S# Not active setup time (relative to	+CLICI1	SDR	3.375	-	-	ns	
clock)	tSHCH	DDR	6.75			ns	
S# deselect time after a READ command	tSHSL1	SDR/DDR	10	-	-	ns	
S# deselect time after a nonREAD command	tSHSL2	SDR/DDR	30	-	-	ns	
Output disable time	SHQZ	SDR/DDR	-	-	6	ns	3
Data Valid Window	tDVW	DDR	2	-	-	ns	
Clock Low to output valid (Cload=12pF)	tCLQV	SDR/DDR	-	-	6	ns	5
Clock High to output valid (Cload=12pF)	tCHQV	DDR	-	-	6	ns	5
Output hold skew	tQHS	DDR	-	-	0.8	ns	
DQS to DQ skew	tDQSQ	DDR	-	-	0.6	ns	
DQS low after first clock	tCLQSL	DDR	-	-	10	ns	5
S# to DQS High-Z	tSHQSZ	DDR	-	-	6	ns	
	.0.5	SDR/DDR	2	-	-	ns	5
Output hold time	tCLQX	DDR only	2	-	-	ns	5

AC Characteristics and Operating Conditions for IS25LX (VCC = 2.7V to 3.6V) (Continued)

Parameter		Symbol	Data Transfer	Min	Тур	Max	Unit	Notes
		,	Rate		, , ,			
Write protect setup time		tWHSL	SDR/DDR	20	-	-	ns	6
Enhanced V _{PPH} HIGH to S# L	OW	tVPPHSL	SDR/DDR	200	-	-	ns	6
S# HIGH to deep power-down	1	tDP	SDR/DDR	3	-	-	us	
S# HIGH to standby mode (D time)	PD exit	tRDP	SDR/DDR	30	-	-	us	
WRITE STATUS REGISTER time	cycle	tW	SDR/DDR	-	1.3	8	ms	
WRITE NONVOLATILE CONFIGURATION REGISTE time	R cycle	tWNVCR	SDR/DDR	-	0.2	1	s	
WRITE PROTECTION MANAGEMENT REGISTER t	iming	tPPMR	SDR/DDR	-	0.1	0.5	ms	
Nonvolatile sector lock time		tPPBP	SDR/DDR	-	0.1	2.8	ms	
Program ASP Register		tASSP	SDR/DDR	-	0.1	0.5	ms	
Program password		tPASSP	SDR/DDR	-	0.2	0.8	ms	
Erase nonvolatile sector lock	array	tPPBE	SDR/DDR	-	0.2	1	S	
Page program time (256 bytes	s)	tPP	SDR/DDR	-	120	1800	us	7
Page program time when Vpp = VPPH (256 bytes)		tPP	SDR/DDR	-	80	1800	us	7
Program OTP cycle time (64 bytes)		tOTP	SDR/DDR	-	0.2	0.8	ms	
Contan Francisco	128KB	tSE SDR/DDR	-	0.2	1			
Sector Erase time	64KB(1)		SDR/DDR	-	0.15	1	S	
Subsector Erase time (4KB)		tSE4K	SDR/DDR	-	20	400	ms	
Subsector Erase time (32KB)		tSE32K	SDR/DDR	-	0.1	1	s	
OL: E	256Mb	4DE	CDD/DDD	-	70	180	s	
Chip Erase time	128Mb	tBE	SDR/DDR	-	30	90	s	

- 1. Typical values given for TA=25°C
- 2. tCH + tCL must add up to 1/fC.
- 3. Value guaranteed by characterization; not 100% tested.
- 4. Expressed as a slew-rate
- 5. The specification only applies when DQS is disabled.
- 6. Only applicable as a constraint for a WRITE STATUS REGISTER command when STATUS REGISTER WRITE is set to 1.
- 7. Typical value is applied for pattern: 50% "0" and 50% "1"

AC Reset Specifications Table 9.4 AC Reset Conditions

Parameter	Symbol	Data Transfer Rate	Min	Тур	Max	Unit
Reset pulse width	tRLRH2	Device deselected (S# HIGH) and is in XIP mode	50	-	-	ns
	tRHSL	Device deselected (S# HIGH) and is in standby mode	40	-	-	ns
		Commands are being decoded, any READ operations are in progress or any WRITE operation to volatile registers are in progress	40	-	-	ns
		Any device array PROGRAM/ERASE/SUSPEND/RESUME, PROGRAM OTP, NONVOLATILE SECTOR LOCK, and ERASE NONVOLATILE SECTOR LOCK ARRAY operations are in progress	30	-	-	us
Reset recovery		While a WRITE STATUS REGISTER operation is in progress	-	tW	-	ms
time		While a WRITE NONVOLATILE CONFIGURATION REGISTER operation is in progress	-	tWNVCR	-	ms
		On completion or suspension of SUBSECTOR ERASE operation	-	tSSE	-	S
		Device in deep power-down mode	-	tRDP	-	ms
		While ADVANCED SECTOR PROTECTION PROGRAM operation is in progress	-	tASSP	-	ms
		While PASSWORD PROTECTION PROGRAM operation is in progress	-	tPASSP	-	ms
	tSHSL3	Device deselected (S# HIGH) and is in standby mode	40	-	-	ns
		Any device array PROGRAM/ERASE/SUSPEND/RESUME, PROGRAM OTP, NONVOLATILE SECTOR LOCK, and ERASE NONVOLATILE SECTOR LOCK ARRAY operations are in progress	30	-	-	us
		While a WRITE STATUS REGISTER operation is in progress	-	tW	-	ms
Software Reset recovery time		While a WRITE NONVOLATILE CONFIGURATION REGISTER operation is in progress	-	tWNVCR	-	ms
		On completion or suspension of SUBSECTOR ERASE operation	-	tSSE	-	s
		Device in deep power-down mode	-	tRDP	-	ms
		While ADVANCED SECTOR PROTECTION PROGRAM operation is in progress	-	tASSP	-	ms
		While PASSWORD PROTECTION PROGRAM operation is in progress	-	tPASSP	-	ms
Chip select high to reset high	tSHRH	Chip must be deselected before reset is de-asserted	10	-	-	ns

Notes: 1. Values are guaranteed by charactyerization; not 100% tested.

^{2.} The device reset is possible but not guaranteed if tRLRH < 50ns.

Figure 9.2 Reset AC Timing During PROGRAM or ERASE Cycle

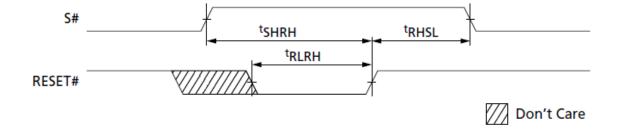


Figure 9.3 SERIAL INPUT TIMING

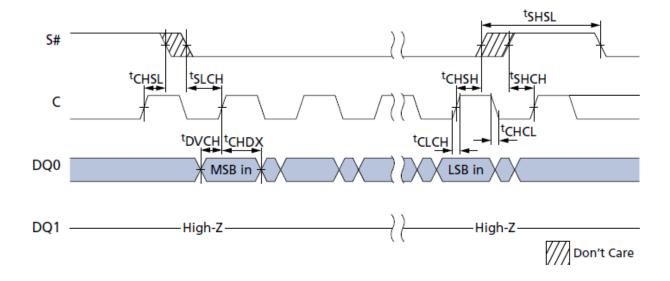


Figure 9.4 SERIAL INPUT TIMING - DDR

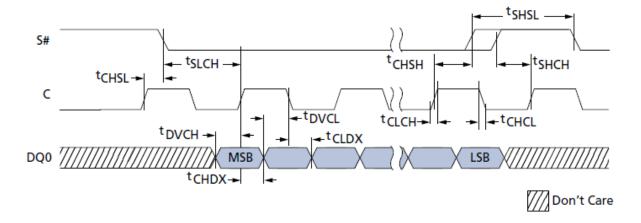


Figure 9.5 Write Protect Setup and Hold During WRITE STATUS REGISTER Operation (SRWD = 1)

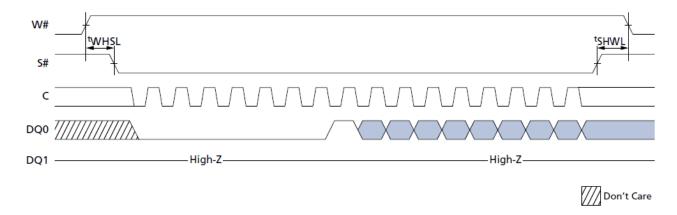


Figure 9.6 Output Timing - SDR

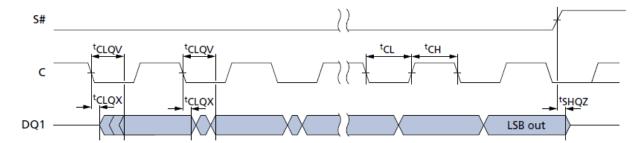
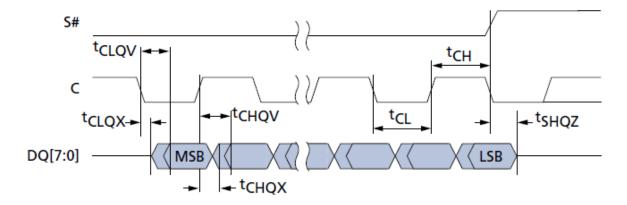
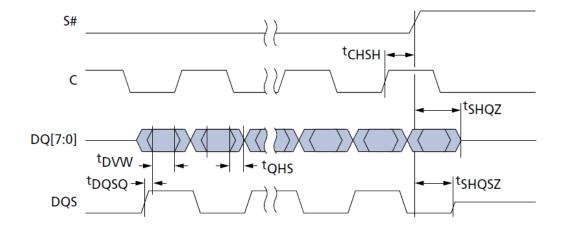
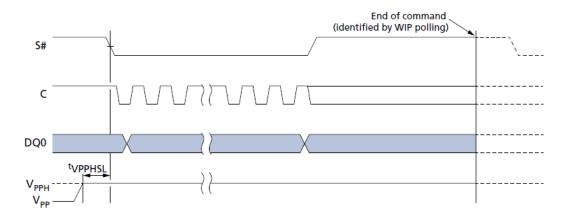


Figure 9.6 Output Timing - DDR


Figure 9.6 Output Timing - DDR with DQS

Note:

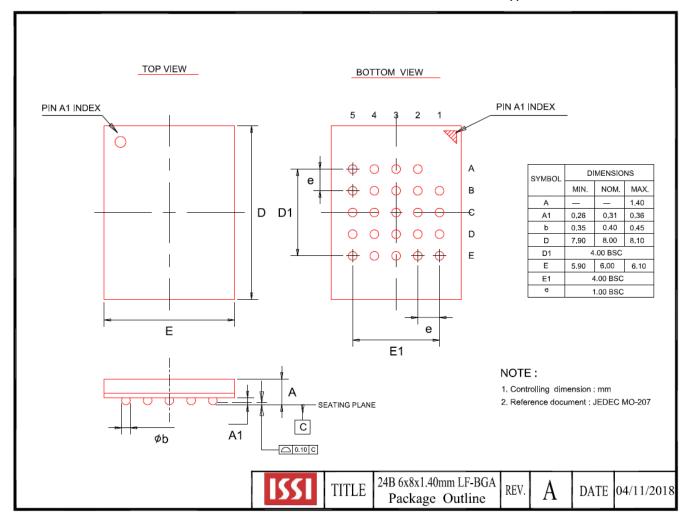
1. The device will be de-selected while clock is HIGH to get even counts of output data. Next DQ (or DQS) output could be observed if clock clock edge is received before S# goes HIGH.

Figure 9.7 V_{PPH} Timing

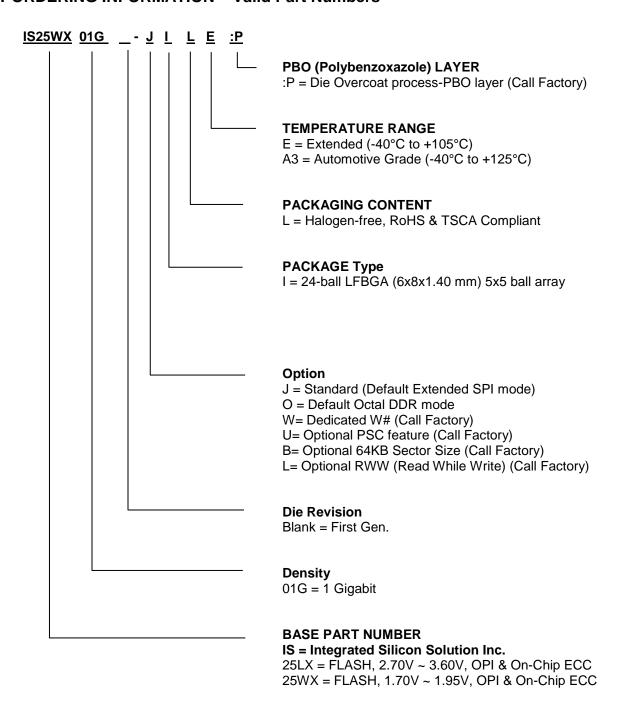
9.6 PROGRAM/ERASE SPECIFICATIONS

Table 9.5 Program/Erase Specifications

Parameter	Condition	Тур	Max	Units	Notes
Erase to suspend	spend Sector erase or erase resume to erase suspend		-	us	1
Program to suspend	Program resume to program suspend	5	-	us	1
Subsector erase to suspend	Subsector erase or subsector erase resume to erase suspend	50	-	us	1
Suspend Latency	Program	7	25	us	2
Suspend Latency	Subsector erase	15	30	us	2
Suspend Latency	uspend Latency Erase		30	us	3


- Timing is not internally controlled.
- Any READ command accepted.

 Any command except the following are accepted: SECTOR, SUBSECTOR, or CHIP ERASE; WRITE STATUS REGISTER; WRITE NONVOLATILE CONFIGURATION REGISTER; and PROGRAM OTP.


10. PACKAGE TYPE INFORMATION

10.1 24-BALL LOW PROFILE FINE PITCH BGA 6X8X1.40MM 5X5 BALL ARRAY (I)

11. ORDERING INFORMATION - Valid Part Numbers

Note:

1. Call Factory for other package options available

Density, Voltage	Frequency (MHz)	Order Part Number	Package
1Gb, 1.8V		IS25WX01G-JILE	24-ball LFBGA 6x8mm 5x5 ball array
	200MHz	IS25WX01G-OILE	24-ball LFBGA 6x8mm 5x5 ball array
		IS25WX01G-JILA3	24-ball LFBGA 6x8mm 5x5 ball array
		IS25WX01G-OILA3	24-ball TFBGA 6x8mm 5x5 ball array

Density, Voltage	Frequency (MHz)	Order Part Number	Package
1Gb, 3.0V 133l		IS25LX01G-JILE	24-ball LFBGA 6x8mm 5x5 ball array
	133MHz	IS25LX01G-OILE	24-ball LFBGA 6x8mm 5x5 ball array
	TSSIVINZ	IS25LX01G-JILA3	24-ball LFBGA 6x8mm 5x5 ball array
		IS25LX501G-OILA3	24-ball TFBGA 6x8mm 5x5 ball array

- 1. A3 meets AEC-Q100 requirements with PPAP.
- 2. Temp Grades: E= -40 to 105° C, A3= -40 to 125° C